### **ENGINEERING ANALYSIS**

### **FACILITY HISTORY**

Sklar Exploration Company, LLC (Sklar) operates Oil & Gas Production Area No. 6 (Area 6) under SMOP Nos. 502-0103-X001 and 502-0103-X002 in northern Escambia County, south of Castleberry, AL in Sections 13 & 24, Township 3 North, Range 10 East. Area 6 is currently comprised of 3 oil & gas wells: CCL&T 13-11 #1 well, CCL&T 13-15 #1 well (formerly CCL&T 13-16 #1), and CCL&T 24-1 #1; one 203 HP Caterpillar G3306B engine (for gas lift), two 163 HP Waukesha F1197 engines (for power oil lift), one 145 HP Caterpillar G3306B/NA engine (for power generation), and two 68 HP Arrow VRG330 engines (also for power generation) are permitted for use within Area 6.

#### **PROJECT DESCRIPTION**

On 5/3/17, the Department received a new application from Sklar requesting to add two additional well sites—each with tanks, flare, heater, and two engines—to Area 6. The wells would be the CCL&T 18-13 and tentatively the CCL&T 14-9. The mineral rights for both lie within quarter-sections adjacent to those of the established wells in Area 6.

Each well would operate with one 163 HP Waukesha F1197 power oil pump engine for artificial lift and and one 68 HP Arrow VRG330 generator engine. Sklar estimates 150 bbl/day of oil and 300 Mscf/day of gas production from each. The average heat value of the gas at the three established wells is 1462.1 Btu/scf (at 14.65 psia and 60 °F) based on recent test reports submitted in the application.

The engines throughout Area 6 are numerous, and for organizational purposes will be referred to as follows in this analysis and in future permits:

| \A/ - II       | Life Consider      | NI NI    | О                  | Marri Marra |
|----------------|--------------------|----------|--------------------|-------------|
| Well           | Lift Engine        | New Name | Generator Engine   | New Name    |
| CCL&T 24-1 #1  | 163 HP Waukesha    | LIFT-1   | 68 HP Arrow        | GEN-1       |
| CCL&T 13-11 #1 | 203 HP Caterpillar | LIFT-2   | 68 HP Arrow        | GEN-2       |
| CCL&T 13-15 #1 | 163 HP Waukesha    | LIFT-3   | 145 HP Caterpillar | GEN-3       |
| CCL&T 18-13 #1 | 163 HP Waukesha    | LIFT-4   | 68 HP Arrow        | GEN-4       |
| CCL&T 14-9 #1  | 163 HP Waukesha    | LIFT-5   | 68 HP Arrow        | GEN-5       |

Table 1 - Engine listing

### **PROCESS DESCRIPTION**

At each well site, the crude oil and produced water streams exiting out of the heater treater flows on to the power oil tank and salt water tank. Natural gas from the separators is routed to the pipeline when possible and the well-site flare when not. Flash vapor from the power oil tank and breathing and working losses from all the storage tanks is collected and sent to the flare for combustion. The flare at the well uses produced gas as pilot gas. The wells in Area 6 all reflect this general setup.

At the 13-11 well, LIFT-2 drives a compressor which provides artificial lift (which improves yield) by injecting gas into the well to increase the flow of the produced wellstream; GEN-2 drives a generator to provide power for the site. At the 24-1 well, LIFT-1 drives a power oil pump used to recirculate crude from the power oil tank back into the well to provide artificial lift, while its GEN-1 drives a generator to provide power for the site. At the 13-15 well (site of the dry 13-16 well), LIFT-3 will also drive a power oil pump when constructed, while GEN-3 will drive a generator for the site (Sklar requested a larger generator at the 13-15 site in case they expand operations in the area in the future, possibly placing the processing equipment for a new well on the same surface location of the 13-15 well). The 18-13 and 14-9 wells will have engine setups mirroring the 24-1 well with the engines designated LIFT-4, GEN-4, LIFT-5, and GEN-5.

### **PROCESS EMISSIONS**

The potential emission sources for the facility currently include separators, tanks, and engines at the three established well sites. The increase in potential emissions from this project would come from similar equipment at the two additional well sites.

Heater emissions are determined using EPA's AP-42 factors. Emissions from the separators and tanks at each site are controlled by flares; potential to emit (PTE) for the flares is determined by AP-42 factors and mass balance based upon continuously burning gas at rates reported in the 2015 engineering analysis for SMOP No. 502-0103-X001 for the three established wells and 300 MMscf/day for the two proposed wells. The gas qualities for both the three established wells and the two proposed wells are from the gas analyses in Sklar's new application for this project. The Department calculates flare PTE from oil & gas wellsites as if all produced gas gets flared while oil production continues, though in ideal & typical practice Sklar sells both its gas and its oil.

Potential to emit (PTE) for the currently permitted LIFT-2 and GEN-3 were calculated as if the engines would operate at the limits imposed on them by 40 CFR Part 60 Subpart JJJJ. Those limits are: 1.0 g(NO<sub>X</sub>)/HP-hr, 2.0 g(CO)/HP-hr, and 0.7 g(VOC)/HP-hr. These engine are controlled by EMIT Technologies non-selective catalytic reduction devices (catalytic converters) capable of meeting those limits. LIFT-1 is subject to Subpart JJJJ's reconstructed engine limits of 3.0 g(NO<sub>X</sub>)/HP-hr, 4.0 g(CO)/HP-hr, and 1.0 g(VOC)/HP-hr, and its PTE is calculated as if it met those limits (though its catalytic converter is rated for better). GEN-1, GEN-2, & LIFT-3 are uncontrolled, and their calculated PTE reflects that.

Sklar has not ordered the individual engines that will be put into use at the 18-13 and 14-9 wells, but they have asserted in their application that they will be two 163 Waukesha F1197 HP power oil pump engines (LIFT-4 & LIFT-5) and two 68 HP Arrow VRG330 generator engines (GEN-4 & GEN-5), each constructed prior to 2006 and not subject to Subpart JJJJ. They have indicated their intent to operate all engines with EMIT Technologies NSCR devices regardless of not being subject to Subpart JJJJ.

For all engines with a catalytic converter, the estimated uncontrolled VOC emissions are lower than the maximum VOC emissions guaranteed by EMIT Technologies. This is because the engines are burning natural gas instead of LPG fuel, while EMIT Technologies' catalytic converters are designed to abide by the Subpart JJJJ standards of NO<sub>X</sub>, CO, and VOC emissions at less than 1.0, 2.0, and 0.7 g/HP-hr respectively (standards which are shared by both natural gas and lean-burn LPG engines). Due to the nature of NSCR control devices, the VOC from the exhaust of natural gas engines will be controlled by those catalytic converters, but EMIT Technologies have just not quantified how much they will control below the 0.7 g/HP-hr level. This analysis will thus use the lower, "uncontrolled" VOC emission factors reported by Caterpillar and Waukesha, though the true PTE for VOC from these engines will be lower. The VOC factor from Waukesha is further inflated because it is reported as non-methane hydrocarbons (ethane + VOC).

Table 2 below shows the potential emissions of the facility after only accounting for required controls on the separators & tanks (flares) and engines subject to Subpart JJJJ limits (catalytic converters), drawing from data from past applications and analyses for the existing emission sources.

|                                          | Pollutant        | Heaters  | Flares    | Engines  | Total Emissions |
|------------------------------------------|------------------|----------|-----------|----------|-----------------|
|                                          | PM               | 0.11     | 0.78      | 0.42     | 1.31            |
| Criteria Pollutant<br>Emissions<br>(TPY) | SO <sub>2</sub>  | 0.01     | 0.30      | 0.05     | 0.36            |
| eria Pollut<br>Emissions<br>(TPY)        | NO <sub>X</sub>  | 1.66     | 29.82     | 106.66   | 138.14          |
| eria I<br>imis<br>(TE                    | СО               | 1.17     | 162.24    | 128.54   | 291.95          |
| Crite                                    | voc              | 0.08     | 172.25    | 6.98     | 179.31          |
|                                          | Total HAPs       | 0.03     | 18.17     | 1.97     | 20.17           |
| St                                       | CO <sub>2</sub>  | 1,766.54 | 56,158.83 | 5,213.78 | 63,139.15       |
| Emissions<br>_TPY)                       | N <sub>2</sub> O | 0.01     | 0.10      | 0.01     | 0.12            |
| Emiss<br>( TPY)                          | CH <sub>4</sub>  | 0.06     | 160.85    | 3.67     | 164.58          |
| ЭНВ                                      | Mass Sum         | 1,766.61 | 56,319.78 | 5,217.46 | 63,303.85       |
| g                                        | CO <sub>2e</sub> | 1,770.67 | 60,208.97 | 5,308.58 | 67,288.21       |

Table 2 – Facility Potential Emissions after required control devices

Area 6 is subject to facility-wide SMOP limits of 95 TPY for CO. When writing the initial permit (X001), to allow for growth the Department did not require Sklar to adhere to a flare-specific CO limit derived by taking 95 TPY CO and subtracting the Engine and Heater PTE values calculated at the time. The actual flare emissions from the 12 months prior to January 1, 2017 were given in the semi-annual report as 6.002 Tons CO, which illustrates the capability of the facility to meet its current SMOP limits of 95 TPY for CO facility-wide without the need for a flare-specific limit even if the number of flares in operation were increased with the operation of 13-15 well and the addition of 18-13 and 14-9 wells. In practice, Sklar only flares when there are pipeline or other process problems disrupting the transfer of gas to the nearby gas plant, or if the well's production is too low to produce gas with adequate pressure to be transported through the pipeline.

Sklar has indicated their intention use NSCR converters on LIFT-3 when installed and on each engine at the 18-13 and 14-9 wells when permitted, though Subpart JJJJ standards that would necessitate that do not apply to that engine. Without using catalytic converters for those engines not subject to JJJJ, the total engine potential emissions are ~128.54 TPY CO and ~106.66 TPY NO<sub>X</sub>, plus ~1.17 TPY CO and ~1.66 TPY CO from the heaters, exceeding the 100 TPY SMOP threshold for each without considering the emissions from Sklar's flares (which are more flexible).

### **EMISSIONS LIMITS**

SMOP Nos. 502-0103-X001 & -X002 have a facility-wide 95 TPY limit on CO because when the SMOP was issued, CO was the only criteria pollutant with a calculated PTE of greater than the 100 TPY for major sources. At the time, the second-closest criteria pollutant to the 100 TPY threshold was VOC with ~78 TPY; VOC now exceeds the 100 TPY threshold after considering the new units in this proposal. Therefore, Sklar has requested a 95 TPY SMOP limit for VOC with the addition of these two wells. The flares at Area 6 have the potential to emit greater than 10 TPY of n-hexane (a HAP) based on the information provided in their application, which would exceed the 10 TPY major source threshold for any single species of HAP; they would not exceed the major-source threshold of 25 TPY multi-species HAPs. However, based on data provided to me, if facility's VOC emissions were limited to 95 TPY and if 7 TPY of that VOC were from the engines, Area 6 would always remain under 10 TPY of n-hexane emissions. Therefore the facility-wide SMOP limit for VOC effectively also functions as a SMOP limit for n-hexane.

There are unit-specific limits on LIFT-2, LIFT-1, and GEN-3 proscribed by NSPS Subpart JJJJ (reconstructed limits for GEN-3). Table 3 below shows the Subpart JJJJ standard in question for engines of this power.

|               | ,               | JJJJ Emission Standards             |     |                 |     |     |  |  |  |  |  |  |
|---------------|-----------------|-------------------------------------|-----|-----------------|-----|-----|--|--|--|--|--|--|
|               | g               | g/HP-hr ppmvd at 15% O <sub>2</sub> |     |                 |     |     |  |  |  |  |  |  |
|               | NO <sub>x</sub> | СО                                  | voc | NO <sub>x</sub> | СО  | voc |  |  |  |  |  |  |
| New           | 1.0             | 2.0                                 | 0.7 | 82              | 270 | 60  |  |  |  |  |  |  |
| Reconstructed | 3.0             | 4.0                                 | 1.0 | 250             | 540 | 86  |  |  |  |  |  |  |

Table 3 – Subpart JJJJ Engine Emission Standards

Neither the LIFT-3 nor any of the proposed engines at the new wells will be subject to NSPS Subpart JJJJ based on their construction dates. Because the facility cannot operate under 100 TPY CO and NO<sub>X</sub> if these engines were to be uncontrolled and because the Department cannot account for the control devices Sklar has volunteered to use without a limit and/or permit provision when evaluating PTE, Sklar has proposed that they will operate LIFT-3, LIFT-4, LIFT-5, GEN-4, & GEN-5 with the EMIT Technologies catalytic converters specified in the application. Sklar will show continuous compliance by calculating its total emissions every month, and to do so Sklar will test its engines to determine emission factors to be used in those calculations.

### REGULATIONS

### STATE REGULATIONS

### ADEM Administrative Code Rule 335-3-4-.01(1)(a and b), "Visible Emission"

**ADEM 335-3-4-.01(a)** states that no person shall emit to the atmosphere an opacity of greater than twenty percent (20%) over a six (6) minute period. **ADEM 335-3-4-.01(b)** states that during one six minute period in any sixty minute period a person may discharge into the atmosphere from any source of emissions, particulate of an opacity not greater than that designated as forty percent (40%) opacity. Therefore, the units would be subject to this regulation. Since natural gas, or propane as a back-up, would be burned in those units, opacity should be negligible; however, if visible emissions are observed, the opacity should be determined using Method 9 of 40 CFR Part 60 Appendix A.

### ADEM Administrative Code Rule 335-3-5-.01(b), "Fuel Combustion"

This regulation covers fuel combustion sulfur limitations for Category II counties, which includes Escambia County. This regulation requires that fuel combustion source in Category II counties limit sulfur compounds to less than 4.0 lb/MMBtu. The fuel-burning units burn propane and raw natural gas (with no appreciable  $H_2S$ ) and accordingly have negligible  $SO_2$  emissions.

# ADEM Administrative Code, Rule 335-3-14-.04, "Prevention of Significant Deterioration (PSD) Permitting"

Based on the emissions found in Tables 2, the facility could exceed 250 tons per year (TPY) major source threshold for criteria pollutants for this type of facility (oil & gas production facilities are not one of the 28 source categories listed in this regulation) for CO. However, the facility currently operates and will continue to operate under a 95 TPY limit on CO, which is far more stringent than an anti-PSD limit such as 249 TPY CO. Greenhouse Gas (GHG) Regulations require a facility to address PSD regulations for Greenhouse Gases. Greenhouse Gases of concern for these sources would be CO<sub>2</sub>, N<sub>2</sub>O, and CH<sub>4</sub>. Per Rule 335-3-14-.04(2)(a)1.(i)&(ii), no PSD review would be necessary for this project.

# ADEM Admin. Rule 335-3-14-.06, "Determinations for Major Sources in Accordance with Clean Air Act Section 112(g)"

This regulation applies to major sources of hazardous air pollutants (HAPs) constructed after March 27, 1998. Since the addition the new units would not make this facility a major source of HAPs, a 112(g) case by case MACT review would not be necessary.

# ADEM Administrative Code, Rules 335-3-15, "Synthetic Minor Operating Permits (SMOPs)" and 335-3-16, "Major Source Operating Permits (MSOPs)"

The combined PTE of the wells exceed the 100 TPY major source threshold for CO,  $NO_X$ , & VOC., and the facility also is also presumed to have the potential to emit greater than 10 TPY or more of a single HAP (n-hexane) as shown in Table 2. However, because Sklar accepted a 95 TPY limit on CO,  $NO_X$ , & VOC and because that 95 TPY limit on VOC essentially functions as a <10 TPY limit on n-hexane, the facility operates as a synthetic minor for both criteria pollutants and HAPs. Additionally, Sklar has adopted unit-specific SMOP limits on several engines to meet their facility-wide SMOP limits for  $NO_X$  and CO; namely, Sklar will operate catalytic converters on LIFT-3, LIFT-4, LIFT-5, GEN-4, & GEN-5 and will test each combination of engine model and control device models among those every 5 years for  $NO_X$  and CO emission factors.

### **FEDERAL REGULATIONS**

### 40 CFR Part 60 Subpart A, "General Provisions"

This subpart is applicable given that facility is subject to one of the applicable subparts found under 40 CFR Part 60.

# 40 CFR Part 60 Subpart JJJJ, "Standards of Performance for Stationary Spark Ignition Internal Combustion Engines"

This subpart is applicable to stationary spark ignition internal combustion engines as specified in §60.4230(a)(1)-(6). LIFT-2 and GEN-3 were manufactured in after 2011, meaning the provisions of §60.4233(e) and the applicable standards of Table 1 of that Subpart are applicable to those engines. LIFT-1, which the Department approved operation of on 5/12/17, was manufactured in 1974 and was reported to be reconstructed after June 12, 2006. It is subject to the standards for reconstructed stationary natural gas engines above 100 HP [§60.4233(f)(4)].

GEN-1, GEN-2, LIFT-3, LIFT-4, GEN-4, LIFT-5, & GEN-5 were all manufactured in prior to 2006 according to their applications, meaning only the provisions of §60.4236 are applicable to those engines [§60.4230(a)(6)]. However, because that engines have not been reported to be modified or reconstructed since June 12, 2006, those listed engines are not subject to this subpart.

|               | ,               | JJJJ E                              | missio | n Stan          | dards |     |  |  |  |  |  |
|---------------|-----------------|-------------------------------------|--------|-----------------|-------|-----|--|--|--|--|--|
|               | g               | g/HP-hr ppmvd at 15% O <sub>2</sub> |        |                 |       |     |  |  |  |  |  |
|               | NO <sub>x</sub> | СО                                  | voc    | NO <sub>x</sub> | СО    | voc |  |  |  |  |  |
| New           | 1.0             | 2.0                                 | 0.7    | 82              | 270   | 60  |  |  |  |  |  |
| Reconstructed | 3.0             | 4.0                                 | 1.0    | 250             | 540   | 86  |  |  |  |  |  |

Table 3– Subpart JJJJ Engine Emission Standards

# 40 CFR Part 60 Subpart OOOOa, "Standards of Performance for Crude Oil and Natural Gas Facilities For Which Construction, Modification or Reconstruction Commenced After September 18, 2015"

This regulation was promulgated by EPA contains SO<sub>2</sub> and VOC requirements for natural gas production wells and natural gas processing plants constructed, reconstructed, or modified after September 18, 2015. The following table summarizes the portions of this regulation that apply specifically to well sites as affected facilities under this regulation:

| AFFECTED SOURCES                                | APPLICABILITY                                                   |
|-------------------------------------------------|-----------------------------------------------------------------|
| Each well [§60.5365(a)]                         | This applies to a single gas or oil well that is hydraulically  |
|                                                 | fractured or re-fractured                                       |
| Pneumatic Controller [§60.5365(d)(1) and (2)]   | This applies to a single continuous-bleed natural-gas-driven    |
|                                                 | pneumatic controllers with a bleed rate of > 6 scf/hr at an oil |
|                                                 | or natural gas production segment                               |
| Storage Vessels [§60.5365(e)]                   | This applies to a single storage vessels located in the oil and |
|                                                 | natural gas production segment, natural gas processing          |
|                                                 | segment or natural gas transmission and storage segment         |
|                                                 | that has potential VOC emissions > 6 TPY                        |
| Hydraulically Fractured Gas Wells [§60.5365(i)] | This applies to the collection of fugitive emissions components |
|                                                 | at a well site                                                  |

### Single Well

The 18-13 and 14-9 wells would not be affected sources under this subpart since they will be neither hydraulically fractured nor refractured, being in the Smackover layer.

### Pneumatic Controller

Sklar has not indicated that they intend to construct any continuous-bleed gas-driven controllers at the 18-13 and 14-9 wells; therefore, the Department does not expect pneumatic controller affected sources as defined by this subpart to be present.

### Storage Vessels

The storage vessels at the 18-13 and 14-9 wells will be constructed after September 18, 2015; the power oil tanks would be considered a Group 2 storage vessel under this subpart based on its uncontrolled emissions. At the wells, tank vapor is routed to a flare for combustion. §60.5365a(e) however only applies to tanks with an uncontrolled PTE of greater than 6 TPY of VOCs, and the determination of PTE "may take into account requirements under a legally and practically enforceable limit in an operating permit or other requirement established under a Federal, State, local or tribal authority". Because the permit includes a stipulation that Sklar may not emit gas without combustion, the closed-vent systems and flares should be included in the PTE determination of potentially subject tanks. Post-control device, the VOC emissions from all tanks are <6 TPY, and the tanks do not meet the definition of *storage vessels* under Subpart OOOOa.

### Fugitive Emissions Components at a Well Site

Fugitive emissions components at the 18-13 and 14-9 wells applicable to this regulation will include the pumps, pressure relief devices, valves, connectors, and other required devices/systems (except compressors) in capable of leaking methane or VOC. As outlined in §60.5397a(a), the aforementioned equipment are subject to the leak standards in §60.5397a(b)-(g), the reporting requirements of §60.5397a(j) and the recordkeeping requirements of §60.5397a(i).

### 40 CFR Part 63 Subpart A, "General Provisions"

This subpart is applicable only provided that the facility is subject to one of the applicable subparts found under 40 CFR Part 63.

# 40 CFR 63 Subpart ZZZZ, "National Emission Standards for Hazardous Air Pollutant for Stationary Reciprocating Internal Combustion Engines (RICE)"

This regulation is also referred to as the RICE MACT and is applicable to any stationary reciprocating internal combustion engine that would be located at a major source of HAPs emissions or an area source of HAPs emissions. A stationary RICE at an area source of HAP emissions is existing if construction of that unit is commenced before June 12, 2006 (§63.6590(a)(1)(iii)). GEN-3 and LIFT-2 are therefore classified as a new RICE. Altogether, they are classified as a new, non-black-start 4SRB stationary RICE located at an area source; their status as *remote* has not been determined. <u>ADEM has not adopted the area source provisions of Subpart ZZZZ</u>, but to comply with federal regulations Sklar must meet the requirements under Subpart ZZZZ. §63.6590(c)(1) states that the requirements of Subpart ZZZZ are met by complying with Part 60 Subpart JJJJ. LIFT-1 is a reconstructed source rather than a new source. However, §63.6590(c)(1) applies to both reconstructed and new sources, so it would meet the requirements of Subpart ZZZZ by complying with the applicable requirements of Subpart JJJJ.

GEN-1, GEN-2, LIFT-3, LIFT-4, GEN-4, LIFT-5, & GEN-5 were first placed into service prior to the effective date for this regulation, and because the definition for *construction* in §63.2 specifically excludes the removal and reassembling of a unit as construction, so they would be classified as existing RICEs. Altogether, they would be classified as existing, non-black start, <500 HP, 4SRB stationary RICEs located at an area source. The engines' status as remote or non-remote was not determined. <u>ADEM has not adopted the area source provisions of Subpart ZZZZ</u>, but to comply with federal regulations Sklar must meet the requirements under Subpart ZZZZ. Sklar should meet the following EPA requirements for the above engines:

### Emission Standards

Compliance with this subpart is met by meeting the following work/management practices specified in Table 2d (Nos. 10) of subpart ZZZZ upon startup (§63.6595(a)):

- For the engine, work/management practices involving:
  - O Change oil and filter every 1,440 hours of operation or annually, whichever comes first (you have the option of utilizing an oil analysis program in order to extend the specified oil change requirements as specified in 40 CFR §63.6625(j)).
  - Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.
  - Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.

At all times, the engine shall be in compliance with the applicable emission limitations, operating limitations, and other requirements (§63.6605(a)). At all times an affected source must be operated and maintained, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions (§63.6605(b)).

The engine's time spent at idle and the engine's startup time at startup shall be minimized to a period needed for appropriate and safe loading of the engines, not to exceed 30 minutes after which time the non-startup emission limitations apply (§63.6625(h)).

Compliance and Performance Test Methods and Procedures

No performance testing is required by Subpart ZZZZ for this engine since there are no Subpart ZZZZ numerical emission standards to comply with.

### Emission Monitoring

Continuous compliance with the requirements of this subpart is met by complying with the requirements specified in Table 6 (No. 9) as follows:

- For all the RICE at facility, to show compliance with work/management practices:
  - Operate and maintain the stationary RICE according to the manufacturer's emission-related operation and maintenance instructions.
     OR
  - Develop and follow your own maintenance plan which provides, to the extent practicable, maintenance and operation of the engine in a manner consistent with good air pollution control practices for minimizing emissions (§63.6625(e)(8)).

### Recordkeeping and Reporting Requirements

As per §63.6655, records used to show continuous compliance with items in Table 6 must be maintained. No reports are required for the engines because they have less than 500 HP.

### **RECOMMENDATIONS**

This analysis indicates that Area 6 would meet continue to meet the requirements of all federal and state rules and regulations with the addition two new well sites and associated equipment. Based on increased potential emissions, Sklar has proposed 95 TPY NO<sub>X</sub> and VOC limits for the facility to remain a synthetic minor source. The 95 TPY VOC limit would function to also keep Area 6 a synthetic minor or area source for HAPs (hexane) based on information provided in their application. Sklar has also proposed to operate several engines not subject to Subpart JJJJ with control devices in order to remain a synthetic minor source for NO<sub>X</sub> and CO. Additionally, the naming convention of the permitted engines will be altered for the permit.

I recommend that the current SMOPs No. 502-0103-X001 & -X002 be rescinded and replaced with a new X003 permit, which will also include the two new wells proposed in the application.

\_\_\_\_ June 29, 2017
Date

R. Jackson Rogers, Jr. Industrial Minerals Section Energy Branch Air Division ADEM

ATTACHMENT A
TABLES



| Well           | Lift Engine        | New Name | Generator Engine   | New Name |
|----------------|--------------------|----------|--------------------|----------|
| CCL&T 24-1 #1  | 163 HP Waukesha    | LIFT-1   | 68 HP Arrow        | GEN-1    |
| CCL&T 13-11 #1 | 203 HP Caterpillar | LIFT-2   | 68 HP Arrow        | GEN-2    |
| CCL&T 13-15 #1 | 163 HP Waukesha    | LIFT-3   | 145 HP Caterpillar | GEN-3    |
| CCL&T 18-13 #1 | 163 HP Waukesha    | LIFT-4   | 68 HP Arrow        | GEN-4    |
| CCL&T 14-9 #1  | 163 HP Waukesha    | LIFT-5   | 68 HP Arrow        | GEN-5    |

Table 1 – Engine listing

|                                          | Pollutant        | Heaters  | Flares    | Engines  | Total Emissions |
|------------------------------------------|------------------|----------|-----------|----------|-----------------|
|                                          | PM               | 0.11     | 0.78      | 0.42     | 1.31            |
| Criteria Pollutant<br>Emissions<br>(TPY) | SO <sub>2</sub>  | 0.01     | 0.30      | 0.05     | 0.36            |
| eria Pollut<br>Emissions<br>(TPY)        | NO <sub>X</sub>  | 1.66     | 29.82     | 106.66   | 138.14          |
| eria I<br>imis<br>(TI                    | СО               | 1.17     | 162.24    | 128.54   | 291.95          |
| Crite                                    | VOC              | 0.08     | 172.25    | 6.98     | 179.31          |
|                                          | Total HAPs       | 0.03     | 18.17     | 1.97     | 20.17           |
| S                                        | CO <sub>2</sub>  | 1,766.54 | 56,158.83 | 5,213.78 | 63,139.15       |
| Emissions<br>TPY)                        | N <sub>2</sub> O | 0.01     | 0.10      | 0.01     | 0.12            |
| Emiss<br>( TPY)                          | CH₄              | 0.06     | 160.85    | 3.67     | 164.58          |
| GHG )                                    | Mass Sum         | 1,766.61 | 56,319.78 | 5,217.46 | 63,303.85       |
| g                                        | CO <sub>2e</sub> | 1,770.67 | 60,208.97 | 5,308.58 | 67,288.21       |

Table 2 – Facility Potential Emissions after required control devices

|               | JJJJ Emission Standards                       |       |     |                             |     |    |  |  |  |  |  |
|---------------|-----------------------------------------------|-------|-----|-----------------------------|-----|----|--|--|--|--|--|
|               | g                                             | /HP-h | r   | ppmvd at 15% O <sub>2</sub> |     |    |  |  |  |  |  |
|               | NO <sub>x</sub> CO VOC NO <sub>x</sub> CO VOC |       |     |                             |     |    |  |  |  |  |  |
| New           | 1.0                                           | 2.0   | 0.7 | 82                          | 270 | 60 |  |  |  |  |  |
| Reconstructed |                                               |       |     |                             |     |    |  |  |  |  |  |

Table 3 – Subpart JJJJ Engine Emission Standards

# ATTACHMENT B EMISSION CALCULATIONS



### LIFT-1

|                       |                | L     | DATA:     |           |                  |             |              |                |                              |                 |           |           |                   |                   |            |
|-----------------------|----------------|-------|-----------|-----------|------------------|-------------|--------------|----------------|------------------------------|-----------------|-----------|-----------|-------------------|-------------------|------------|
|                       |                |       | 2         | 4-1 Gas L | ift (LIFT-1)     | )           |              |                |                              | AP-42           | Emission  | n Factors |                   |                   |            |
| ENGINE TYP            | Έ              | =     | 4SF       | RB        | N                | G           |              |                |                              |                 | (lb/MMBtu | 1)        |                   |                   |            |
| FUEL HEAT             | CONTENT        | =     | 1,416     | Btu/Scf   |                  |             | Туре         | PM             | SO <sub>2</sub> <sup>1</sup> | NO <sub>X</sub> | СО        | voc       | CH <sub>2</sub> O | Other I           | HAPs       |
| FUEL H2S C            | ONTENT         | =     | 10.00     | ppmv      |                  |             | Diesel       | 3.10E-1        | [By Mass]                    | 4.41E+0         | 9.50E-1   | 3.50E-1   | 1.18E-3           | 2.69              | E-3        |
| MAXIMUM EN            | NGINE HP       | =     | 163       | HP        |                  |             | 2SLB         |                |                              | 3.17E+0         |           | 1.20E-1   | 5.52E-2           | 2.53              | E-2        |
| ENGINE OP             | HOURS          | =     | 8,760     | Hr        |                  |             | 4SLB         | 7.71E-5        | 5.88E-4                      | 4.08E+0         | 3.17E-1   | 1.18E-1   | 5.28E-2           | 2.10              | E-2        |
| ENGINE RAT            | ΓING           | =     | 1.30      | MMBtu/hr  |                  |             | 4SRB         | 9.50E-3        | 5.88E-4                      | 2.27E+0         | 3.72E+0   | 2.96E-2   | 2.05E-2           | 1.20              | E-2        |
| BRAKE-SPE             | CIFIC          |       |           | Btu/      |                  |             |              | 40             | CFR Part                     | 98 Subpa        | rt C      |           |                   | GW                | /P         |
| FUEL CONS             | UMPTION        | =     | 8,000     | HP-hr     |                  |             |              |                |                              | Emission        |           |           |                   | N <sub>2</sub> O= | 298        |
| CALCULATI             | ON BASIS       | =     | Contr     | olled and | d Unconti        | rolled      |              |                | Tables C                     | C-1 & C-2       |           |           |                   | CO <sub>2</sub> = | 1          |
| EMISSION I            | FACTORS        |       |           |           | URER'S E         |             |              |                | (kg/N                        | IMBtu)          |           |           |                   | CH <sub>4</sub> = | 25         |
| (EF                   |                |       | Uncont    | rolled    | Contr            | olled       |              |                | N <sub>2</sub> O             | CO <sub>2</sub> | CH₄       |           |                   |                   |            |
| NC                    | ) <sub>X</sub> | =     | 16.57     | g/HP-hr   | 3                | g/HP-hr     |              | Diesel         | 0.0006                       | 75.04           | 0.003     |           |                   |                   |            |
| CC                    |                | =     |           | g/HP-hr   |                  | g/HP-hr     |              | NG A           | 0.0001                       | 53.06           | 0.001     |           |                   |                   |            |
| VO                    | С              | =     |           | g/HP-hr   |                  | g/HP-hr     |              | LPG            | 0.0006                       | 62.72           | 0.003     |           |                   |                   |            |
| CH                    |                | =     |           | g/HP-hr   |                  | g/HP-hr     |              | Propane        | 37                           | 61.46           | 0.003     |           |                   |                   |            |
| CH                    |                | =     |           | g/HP-hr   |                  | g/HP-hr     |              | 11000          | 0.000                        | 01.10           | 0.000     |           |                   |                   |            |
| 31                    | •4             |       |           |           | ntrolled 16      | •           | l<br>ne Emis | ssions Cal     | culations                    |                 |           |           |                   |                   |            |
|                       |                |       | Should    |           | 1                | <b>-</b> yı |              | our            | - 2.2.10113                  | 1               |           | Uncon     | rolled            | Contro            | المط       |
|                       | 0.0095         | l h   | 1 20      | MMBtu     | 8760 Hrs         | 1 Ton       |              | C E            |                              |                 |           |           | Tons              |                   | Tons       |
| PM                    |                |       | 1.30<br>H |           |                  | 2000 Lb     |              | S.F.           | - 4                          | <b>-</b>        | = "       | Ye        |                   | Yea               |            |
|                       | MME            | วเน   | П         | <u> </u>  | Year             | 2000 Lb     |              |                |                              |                 |           | 1e        | ar                | 166               | ar         |
|                       | 0.0006         | lb    | 1.30      | MMBtu     | 8760 Hrs         | 1 Ton       |              | S.F.           | 10                           | ppmv S          |           | 0.01      | Tons              | 0.01              | Tons       |
| SO <sub>2</sub>       | MME            |       | H         |           | Year             | 2000 Lb     |              | 0              | 1020020020000                | ppmv S          | =         | Ye        |                   | Year              |            |
|                       |                |       |           | •         | 1 4 4            |             |              |                |                              | ррии с          |           |           |                   |                   |            |
| NO <sub>x</sub>       | 16.57          | g     | 163.00    | HP        | 1 Lb             | 8,760       | Hr           | 1 Ton          | 1                            | S.F.            |           | 26.08     | Tons              | 4.72              | Tons       |
| NOX                   | HP-            | Hr    |           |           | 453.6 g          | Yea         | ar           | 2000 Lb        | 000 Lb                       |                 | =         |           | ar                | Yea               | ar         |
|                       |                |       |           |           |                  |             |              |                |                              |                 |           |           |                   |                   |            |
| со                    | 16.57          | •     | 163.00    | HP        | 1 Lb             | 8,760       | ESPECIAL .   | 1 Ton          |                              | S.F.            | =         |           | Tons              |                   | Tons       |
|                       | HP-            | Hr    |           |           | 453.6 g          | Yea         | ar           | 2000 Lb        |                              |                 |           | Ye        | ar                | Yea               | ar         |
|                       | 0.12           | a .   | 163.00    | ШΡ        | 1 Lb             | 8.760       | Hr           | 1 Ton          |                              | S.F.            |           | 0 10      | Tons              | 0 10              | Tons       |
| voc                   | 0. 12<br>HP-   | _     | 103.00    | TIE       | 453.6 g          |             | 1000         | 2000 Lb        |                              | <b>З.</b> Г.    | =         | Ye        |                   | Yea               |            |
|                       | 111 -          | 1 11  |           |           | 430.0 g          | 166         | <i>1</i> 1   | 2000 LD        |                              |                 |           | 10.       | 41                | 100               | <b>и</b> 1 |
|                       | 0.2500         | g     | 163.00    | HP        | 1 Lb             | 8.760       | Hr           | 1 Ton          |                              | S.F.            |           | 0.39      | Tons              | 0.39              | Tons       |
| CH <sub>2</sub> O     | HP-            | Hr    |           |           | 453.6 g          | Yea         | ar           | 2000 Lb        |                              |                 | =         | Ye        | ar                | Yea               | ar         |
|                       |                |       |           |           |                  |             |              |                |                              |                 |           |           |                   |                   |            |
| non-CH <sub>2</sub> O | 0.0120         | lb    | 1.30      | MMBtu     |                  | 8,760       | Hr           | 1 Ton          |                              | S.F.            | _         | 0.07      | Tons              | 0.07              | Tons       |
| HAPs                  | MME            | 3tu   | Н         | r         |                  | Yea         | ar           | 2000 Lb        |                              |                 | _         | Ye        | ar                | Yea               | ar         |
|                       |                | 1415  |           |           |                  |             |              |                |                              | _               |           |           | _                 |                   | _          |
| CO <sub>2</sub>       |                | MMBtu | 53.06     | _         | DEFECTIONS.      | etric Ton   |              |                | 1.10231                      |                 | =         | 668.12    |                   | 668.12            |            |
|                       | Hi             | 4     | MMI       | 3tu       | l k              | g           | Y            | ear/           | 1 M                          | Ton             |           | Ye        | ar                | Yea               | ar         |
|                       | 1 30           | MMBtu | 0.0001    | ka        | 0 001 M          | etric Ton   | 8,760        | Hr             | 1.10231                      | Tons            |           | 0.00      | Tons              | 0.00              | Tons       |
| N <sub>2</sub> O      | Hı             |       | MMI       |           |                  | g           |              | 'ear           |                              | Ton             | =         | Ye        |                   | Yea               |            |
|                       |                |       | IVIIVII   | Jiu .     | ^                | 9           | ,            | Car            | '''                          | 1011            |           |           |                   |                   |            |
| 011                   | 1.02           | g     | 163.000   | HP        | 1 1              | Lb          | 8,760        | Hr             | 1                            | Ton             |           | 1.61      | Tons              | 1.61              | Tons       |
| CH₄                   | HP-            | Hr    |           |           | 453              | .6 g        | γ            | 'ear           | 2000                         | Lbs             | =         | Ye        | ar                | Yea               | ar         |
|                       |                |       |           |           |                  |             |              |                |                              |                 |           |           |                   |                   |            |
|                       | 668.12         | Tons  | +         | 0.0013    | Tons             | +           |              | 1.6054         | To                           | ns              | =         | 669.72    | Tons              | 669.72            | Tons       |
| Mass Sum              | Yea            | ar    | т         | Y         | ear              |             |              | Y              | ear                          |                 | _         | Ye        | ar                | Yea               | ar         |
|                       | CC             | )2    |           |           | N <sub>2</sub> O |             |              | (              | CH₄                          |                 |           |           |                   |                   |            |
|                       |                |       |           |           |                  |             |              |                |                              |                 |           |           |                   |                   |            |
|                       | 668.12         |       |           |           | TPY*298          | +           |              | 1.605 TPY*25 = |                              | _               | 708.63    |           | 708.63            |                   |            |
| CO <sub>2</sub> e     |                | 12    | +         | Λ         | 0.38             |             | 40.14        |                |                              |                 | Vo.       | ar Year   |                   |                   |            |

<sup>&</sup>lt;sup>1</sup> EPA AP-42 factors assume gas to have 2000 gr S/MMScf (at EPA STP). This equates to 3.44 ppmv S, assuming ideal gas. AP-42 factor can be corrected to sulfur value of facility gas by comparing actual sulfur values to EPA reference point. Assume ppmv H<sub>2</sub>S = ppmv S (true if H<sub>2</sub>S = TRS and TRS is entirely monosulfur compounds).

### GEN-1

|                   |                |            | DATA:      |           |                  |                                 |                      |                                         |                   |                 |           |               |                   |                   |       |
|-------------------|----------------|------------|------------|-----------|------------------|---------------------------------|----------------------|-----------------------------------------|-------------------|-----------------|-----------|---------------|-------------------|-------------------|-------|
|                   |                |            | 24         | -1 Genera | ator (GEN-       | 1)                              |                      |                                         |                   | AP-42           | Emission  | on Factors    |                   |                   |       |
| ENGINE TYP        | PΕ             | =          | 4SF        | 2R        | · N              | G                               |                      |                                         |                   | 71 12           | (lb/MMBtu |               |                   |                   |       |
| FUEL HEAT         |                | =          | ,          | Btu/Scf   |                  | _                               | Туре                 | PM                                      | SO <sub>2</sub> 1 | NO <sub>x</sub> | СО        | voc           | CH <sub>2</sub> O | Other             | HAPs  |
| FUEL H2S C        |                | =          | 10.00      |           |                  |                                 |                      |                                         | _                 | 4.41E+0         |           | 3.50E-1       | 1.18E-3           | 2.69              |       |
| MAXIMUM EN        |                | =          |            | HP        |                  |                                 | 2SLB                 |                                         |                   | 3.17E+0         |           | 1.20E-1       | 5.52E-2           | 2.53              |       |
| ENGINE OP         |                | =          | 8,760      |           |                  |                                 | 4SLB                 | 7.71E-5                                 | 5.88E-4           |                 |           | 1.18E-1       | 5.28E-2           | 2.10              | E-2   |
| ENGINE RAT        |                | =          |            | MMBtu/hr  |                  |                                 | 4SRB                 |                                         |                   |                 | 3.72E+0   |               | 2.05E-2           | 1.20              |       |
| BRAKE-SPE         | CIFIC          |            | ,          | Btu/      |                  |                                 |                      |                                         |                   | 98 Subpa        |           |               |                   | GW                | /P    |
| FUEL CONS         |                | =          | 8,000      | HP-hr     |                  |                                 |                      |                                         |                   | Emission        |           |               |                   | N <sub>2</sub> O= | 298   |
| CALCULATI         | ON BASIS       | =          | Contr      | olled and | d Unconti        | olled                           |                      |                                         | Tables C          | C-1 & C-2       |           |               |                   | CO <sub>2</sub> = | 1     |
| EMISSION I        | FACTORS        |            |            |           | URER'S E         |                                 |                      |                                         | (kg/N             | MBtu)           |           |               |                   | CH₄=              | 25    |
| (EF               |                |            | Uncont     | rolled    | Contr            | olled                           |                      |                                         | N <sub>2</sub> O  | CO <sub>2</sub> | CH₄       |               |                   |                   |       |
| NC                | ) <sub>Y</sub> | =          |            | g/HP-hr   |                  | g/HP-hr                         |                      | Diesel                                  | 0.0006            | 75.04           | 0.003     |               |                   |                   |       |
| CC                |                |            |            | g/HP-hr   |                  | g/HP-hr                         |                      | NG A                                    | 0.0001            | 53.06           | 0.001     |               |                   |                   |       |
| VO                |                | =          |            | g/HP-hr   |                  | g/HP-hr                         |                      | LPG                                     | 0.0006            | 62.72           | 0.003     |               |                   |                   |       |
| CH                |                |            |            | g/HP-hr   |                  | g/HP-hr                         |                      | Propane                                 | 10"               | 61.46           | 0.003     |               |                   |                   |       |
| CH                | -              | =          | 0.07       | g/HP-hr   |                  | g/HP-hr                         |                      | Торало                                  | 0.0000            | 01.10           | 0.000     |               |                   |                   |       |
| 0.                | 14             |            | ontrolled: |           | ntrolled 68      | •                               | e Emis               | sions Calc                              | ulations          |                 |           |               |                   |                   |       |
|                   |                |            |            |           |                  | · · · · · · · · · · · · · · · · | -                    | l l                                     |                   | İ               |           | Uncon         | rolled            | Contr             | ollod |
|                   | 0.0095         | l h        | 0.54       | MMBtu     | 8760 Hrs         | 1 Ton                           |                      | S.F.                                    |                   |                 |           | HET           | Tons              |                   | Tons  |
| PM                | 0.0095<br>MMI  |            | 0.54<br>H  |           | Year             | 2000 Lb                         | - 1                  | Э.Г.                                    | - 4               |                 | = "       | Ye            |                   | Yea               |       |
|                   | IVIIVII        | วเน        | П          |           | rear             | 2000 LD                         |                      |                                         |                   |                 |           | 16            | 21                | 160               | aı    |
|                   | 0.0006         | lb         | 0.54       | MMBtu     | 8760 Hrs         | 1 Ton                           |                      | S.F.                                    | 10                | ppmv S          |           | 0.00          | Tons              | 0.00              | Tons  |
| SO <sub>2</sub>   | MMI            | 3tu        | Н          | r         | Year             | 2000 Lb                         |                      |                                         | 3.44              | ppmv S          | =         | Ye            | ar                | Yea               | ar    |
|                   |                |            |            |           |                  |                                 |                      |                                         |                   |                 |           |               |                   |                   |       |
| NO <sub>X</sub>   | 14.4           | g          | 68.00      | HP        | 1 Lb             | 8,760                           | Hr                   | 1 Ton                                   |                   | S.F.            | _         | 9.46          | Tons              | 9.46              | Tons  |
| ,                 | HP-            | Hr         |            |           | 453.6 g          | Yea                             | ar                   | 2000 Lb                                 |                   |                 |           | Ye            | ar                | Yea               | ar    |
|                   | 40.0           | _          | 00.00      | ш         | 2.15             | 0.700                           | Lle                  | 1 Ton                                   |                   | 0.5             |           | 10.70         | T                 | 10.70             | T     |
| co                | 16.3<br>HP-    | -          | 68.00      | HP        | 1 Lb             | 8,760                           | ESSESSION.           | 400000000000000000000000000000000000000 |                   | S.F.            | =         | 10.70<br>Ye:  | Tons              | 10.70<br>Yea      |       |
|                   | HP-            | Hr         |            |           | 453.6 g          | Yea                             | ar .                 | 2000 Lb                                 |                   |                 |           | Te            | 41                | 100               | aı    |
|                   | 3.00           | g I        | 68.00      | HP        | 1 Lb             | 8,760                           | Hr                   | 1 Ton                                   |                   | S.F.            |           | 1.97          | Tons              | 1.97              | Tons  |
| voc               | HP-            |            |            |           | 453.6 g          | Yea                             | 1000                 | 2000 Lb                                 |                   |                 | =         | Ye            | ar                | Yea               | ar    |
|                   |                |            |            |           |                  |                                 |                      |                                         |                   |                 |           |               |                   |                   |       |
| CH₂O              | 0.0700         | g          | 68.00      | HP        | 1 Lb             | 8,760                           | Hr                   | 1 Ton                                   |                   | S.F.            |           | 0.05          | Tons              | 0.05              | Tons  |
| 01120             | HP-            | Hr         |            |           | 453.6 g          | Yea                             | ar                   | 2000 Lb                                 |                   |                 | _         | Ye            | ar                | Yea               | ar    |
|                   |                |            |            |           |                  |                                 |                      | 4 =                                     |                   | 0.5             |           | 0.00          | -                 | 0.00              | -     |
| non-CH₂O<br>HAPs  | 0.0120         | Oloho.     |            | MMBtu     |                  | 8,760                           |                      | 1 Ton                                   |                   | S.F.            | =         |               | Tons              |                   | Tons  |
| парѕ              | MMI            | 3tu        | Н          | r         |                  | Yea                             | ar                   | 2000 Lb                                 |                   |                 |           | Ye            | ar                | Yea               | ar    |
|                   | 0.54           | MMBtu      | 53.06      | ka        | 0 001 Me         | etric Ton                       | 8 760                | Hr                                      | 1.10231           | Tons            |           | 278.72        | Tons              | 278.72            | Tons  |
| CO <sub>2</sub>   | H              | Volume 1   | MMI        |           |                  | g                               | -                    | 'ear                                    |                   | Ton             | =         | Ye            |                   | Yea               |       |
|                   |                |            |            |           |                  |                                 |                      |                                         |                   |                 |           |               |                   |                   |       |
| N <sub>2</sub> O  | 0.54           | MMBtu      | 0.0001     | kg        | 0.001 Me         | etric Ton                       | 8,760                | Hr                                      | 1.10231           | Tons            | _         | 0.00          | Tons              | 0.00              | Tons  |
| 1120              | H              | r          | MMI        | 3tu       | k                | g                               | γ                    | 'ear                                    | 1 M               | Ton             | =         | Ye            | ar                | Yea               | ar    |
|                   |                |            |            |           |                  |                                 |                      |                                         |                   |                 |           |               |                   |                   | _     |
| CH₄               | ***            | MMBtu      | 0.001      |           | 0.001 Me         |                                 | 8,760                |                                         | 1.10231           |                 | =         |               | Tons              |                   | Tons  |
|                   | H              |            | MMI        | ≾tu       | l k              | g                               | }                    | ear                                     | 1 M               | Ton             |           | Yea           | ar                | Yea               | ar    |
|                   | 278.72         | Tone       |            | 0.0005    | Tone             |                                 |                      | 0.0053                                  | To                | ns              |           | 278.73        | Tone              | 278.73            | Tone  |
| Mass Sum          | 276.72<br>Ye:  |            | +          |           | ear              | +                               |                      |                                         | ear               | 0110            | =         | 278.73<br>Yea |                   | 278.73<br>Yea     |       |
| mass Suill        | CC             |            |            |           |                  |                                 |                      |                                         |                   |                 |           | 160           | A.                | 160               |       |
|                   |                | <b>7</b> 2 |            | ı         | N₂O              |                                 |                      |                                         | CH₄               |                 |           |               |                   |                   |       |
|                   | 278.72         | TPY*1      |            | 0.0005    | TPY*298          |                                 |                      | 0.005                                   | TP                | /*25            |           | 279.01        | Tons              | 279.01            | Tons  |
| CO <sub>2</sub> e | 278.           |            | +          |           | .16              | +                               | 0.005 TPY*25<br>0.13 |                                         | =                 | Ye              |           | Yea           |                   |                   |       |
| CO₂e              |                |            |            |           | N <sub>2</sub> O |                                 | 0.13<br>CH₄          |                                         |                   |                 |           |               |                   |                   |       |

<sup>&</sup>lt;sup>1</sup> EPA AP-42 factors assume gas to have 2000 gr S/MMScf (at EPA STP). This equates to 3.44 ppmv S, assuming ideal gas. AP-42 factor can be corrected to sulfur value of facility gas by comparing actual sulfur values to EPA reference point. Assume ppmv H<sub>2</sub>S = ppmv S (true if H<sub>2</sub>S = TRS and TRS is entirely monosulfur compounds).

## 24-1 Flare

| 24-1 Flare                | •                               |                                 |             |                        |                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |                  |                       |                       |                  |                     |
|---------------------------|---------------------------------|---------------------------------|-------------|------------------------|-------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------|------------------|-----------------------|-----------------------|------------------|---------------------|
| Data                      | Total                           |                                 | Separ       | ator Gas               | Tan                     | k Gas                    | Pilo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ot Gas                    | GWP (11/          | GWP (11/29/2013) |                       | Part 98               | Sub C GHG E      | mission             |
| Volume                    | 12,701.740                      | scf/hr (Ind.)                   | 300.0       | Mscf/day               | 4.8                     | Mscf/day                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mscf/day                  | N <sub>2</sub> 0= | 298              |                       | Factor                | 's (Table C-1)   |                     |
| H <sub>2</sub> S mol%     | 0.0010%                         | mol%                            | 0.0010%     | mol%                   | 0.0000%                 | mol%                     | 0.0000%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mol%                      | CO <sub>2</sub> = | 1                | N <sub>2</sub> 0=     |                       | 0.0001           | kg/MMBt             |
| Heat Content              | 1427.25                         | Btu/scf (Ind)                   |             | Btu/scf (Ind)          |                         | Btu/scf (Ind)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Btu/scf (Ind)             | CH₄=              | 25               | AF                    | 42 Em                 | issions Facto    | ors <sup>7</sup>    |
| VOC MW                    | 10.75                           | lb/lb-mol <sup>2</sup>          | 10.49       | lb/lb-mol <sup>2</sup> | 26.76                   | lb/lb-mol <sup>2</sup>   | 4 <del>3.2</del> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lb/lb-mol <sup>2</sup>    |                   |                  | NO <sub>X</sub> =     |                       | 0.068            | lb/MMBtu            |
| CO <sub>2</sub>           | 0.81%                           | mol%                            | 0.82%       | mol%                   | 0.18%                   | mol%                     | 0.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mol%                      |                   |                  | CO=                   |                       | 0.37             | lb/MMBtu            |
| CH₄                       | 61.80%                          | mol%                            | 62.31%      |                        | 30.03%                  |                          | 0.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                   |                  | PM <sub>1</sub> =     |                       | 40               | μg/L                |
| C <sub>6</sub>            | 1.07                            | lb/lb-mol <sup>2</sup>          | 1.06        | lb/lb-mol <sup>2</sup> | 1.78                    | lb/lb-mol <sup>2</sup>   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lb/lb-mol <sup>2</sup>    |                   |                  |                       |                       |                  |                     |
| OP Hours                  | 8760                            | Hrs                             |             |                        |                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | (Ind. STP)        | scf/lbmol=       | 380.67                | 60 °F                 | 14.65            | <mark>5</mark> psia |
| Destruction Eff           | 98.00%                          | DRE                             | Hea         | at Input               | 18.13                   | MMBtu/hr <sup>1</sup>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | (EPA STP)         | scf/lbmol=       | 385.5                 | 68 °F                 | 14.696           | psia                |
| 5                         |                                 | 1                               |             | Po                     | tential F               | lare Emissi              | ion Calcu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lations                   | 1                 |                  |                       |                       |                  |                     |
| Pollutants                | 40                              | μg                              | 12701.7     | scf (Ind.)             | 2.2E-9 lb               | 8,760                    | Шr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 Ton                     | 28.31685          | 1 1 01           | f/EDA)                |                       | 0.44             |                     |
| PM <sub>1</sub>           | L                               | μ9                              |             | Hr                     | 2.2E-9 ID               | Yea                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,000 Lb                  | scf (EPA          |                  | scf(EPA)<br>scf(Ind.) | - =                   | Yea              | Tons                |
|                           |                                 |                                 |             |                        | μ9                      |                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           | SCI (LI Z         | , ,              | 301(1110.)            |                       |                  | -                   |
| 22                        | 168.3                           | Lb SO <sub>2</sub> <sup>4</sup> | 12.702      | MScf (Ind.)            | 0.001%                  | H <sub>2</sub> S Mol%    | 8,760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hr                        | 1 Ton             |                  |                       | _                     | 0.092            | 2 Tons              |
| SO <sub>2</sub>           | MScf (Inc                       | d.)                             |             | Hr                     |                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 'ear                      | 2,000 Lb          |                  |                       | =                     | Yea              | r                   |
|                           |                                 |                                 |             |                        |                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |                  |                       |                       |                  |                     |
| NO <sub>x</sub>           | 0.068                           | lb                              |             | MMBtu                  | 8,760                   |                          | A DESCRIPTION OF THE PARTY OF T | Ton                       |                   |                  |                       |                       |                  | Tons                |
|                           | MMBtu                           | J                               |             | Hr                     | \ \                     | /ear                     | 2,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00 Lb                     |                   |                  |                       | =                     | Yea              | r                   |
|                           | 0.37                            | lb                              | 18 120      | MMBtu                  | 8,760 Hr                |                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ton                       |                   |                  |                       |                       | 20 370           | Tons                |
| со                        | 0.57<br>MMBtu                   |                                 |             | Hr                     |                         | rear                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00 Lb                     |                   |                  |                       | = -                   | Yea              |                     |
|                           | IVIIVIDIC                       |                                 |             | 111                    |                         | cai                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |                  |                       |                       |                  |                     |
| VOC⁵                      | 12,701.7                        | Scf (Ind.)                      | 1           | lb-mol                 | 10.75                   | Lb VOC                   | 8,760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hr                        | 1 Ton             | 2.00%            | Inv. DRE              | _                     | 31.422           | 2 Tons              |
| VOC                       | Hr                              |                                 | 380.67      | scf (Ind.)             | Lb                      | -Mole                    | Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | 2,000 Lb          |                  |                       | ] = [                 | Yea              | r                   |
|                           |                                 |                                 |             | 4                      |                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |                  |                       |                       |                  |                     |
| HAPs <sup>8</sup>         | 12,701.7                        | Scf (Ind.)                      |             | lb-mol                 | COLOR COLOR             | Lb C <sub>6</sub>        | 8,760 Hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           | 1 Ton             | 2.00%            | Inv. DRE              | - =                   |                  | Tons                |
|                           | Hr                              |                                 | 380.67      | scf (Ind.)             | Lb                      | -Mole                    | Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | 2,000 Lb          |                  |                       |                       | Yea              | r                   |
| CO <sub>2</sub> 5,6       | 98.00% DRE                      | 1.11E+08                        | Scf (Ind.)  | 1.61                   | lb-mol C                | O <sub>2</sub> (stoich.) | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lb-mol gas                | 44.01             | lb CO₂           | 1 Ton                 |                       | 10,132.14        | Tons                |
| of Combustion             | 00.0070 2.1.2                   | Yr                              |             |                        | 1004000400400           | as (stoich.)             | CONTRACTOR OF THE PROPERTY OF  |                           | lb-mol            |                  | 2,000 Lb              |                       | Yea              |                     |
|                           |                                 |                                 |             |                        |                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , ,                       |                   | 2                | 1                     |                       |                  |                     |
| CO <sub>2</sub>           | 1.11E+08                        | Scf (Ind.)                      | 0.81%       | mol% CO <sub>2</sub>   | 1                       | lb-mol                   | 44.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lb CO2                    | 1 Ton             |                  |                       | _                     | 52.09            | Tons                |
| of Fuel                   | Yr                              | 4                               |             |                        | 380.67                  | scf (Ind.)               | Lb-mole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           | 2,000 Lb          |                  |                       | _ [                   | Yea              | r                   |
|                           |                                 |                                 |             |                        |                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |                  | _                     |                       |                  |                     |
| N₂O                       | 0.001 M Ton                     | 0.001427<br>Scf (Ir             |             | 12,701.7<br>Hr         |                         | 0.0001<br>MME            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8,760<br>Ye               |                   | 1.1023           | Tons<br>ric Ton       | - = -                 | 0.0175<br>Yea    | Tons                |
|                           | Ng .                            | 301 (11                         | 10.)        |                        |                         | IVIIVIL                  | , iu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16                        | aı                | i ivicu          | 1011                  |                       | Tea              |                     |
| CH,                       | 1.11E+08                        | Scf (Ind.)                      | 2.00%       | Inv. DRE               | 61.80%                  | mol% CH <sub>4</sub>     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lb-mol                    | 16.043            | Lb CH4           | 1 Ton                 |                       | 28.98            | Tons                |
| Uncombusted               | Yr                              |                                 |             |                        |                         |                          | 380.675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | scf (Ind.)                | Lb-m              |                  | 2,000 Lb              | =                     | Yea              | r                   |
|                           |                                 |                                 |             |                        |                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |                  | '                     |                       |                  |                     |
|                           | 10,184.23                       | Tons                            |             | +                      | 0.0175                  | Tons                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                         | 28                | .98 Tons         |                       |                       | 10,213.22        |                     |
| Mass Sum                  | Year                            |                                 |             |                        | )                       | ⁄ear                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                         |                   | Year             |                       |                       | Yea              | r                   |
|                           |                                 | CO2                             |             |                        |                         | N2O                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   | CH4              |                       |                       |                  |                     |
|                           | 10,184.23                       | TPY                             | X 1         |                        | 0.0175                  | TPY                      | X 298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | 28.98             | TP :             | X 25                  |                       | 40.040.04        |                     |
| CO,e                      |                                 | 184.23                          |             | +                      | 0.01.0                  | 5.22                     | 7. 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +                         | 20.00             | 724.46           | . 20                  | = -                   | 10,913.91<br>Yea |                     |
| CO <sub>2</sub> e         |                                 | CO2                             |             |                        |                         | N2O                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | '                         |                   | CH4              |                       |                       | 100              |                     |
| 1                         |                                 | 4                               |             |                        |                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -6                        |                   | СП4              |                       |                       |                  | -                   |
|                           | apacity (MMBtu/                 |                                 |             |                        |                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |                  |                       |                       |                  | -                   |
|                           | nole) = $\Sigma$ (Mole%         |                                 |             |                        |                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | IG Spreed         | Sheet for        | gas anal              | ysis                  |                  |                     |
| <sup>3</sup> Has to be ma | intained <500 lb,               | /hr or 20 pp                    | bv offsite  | e concentra            | tion coul               | d potential              | ly be exc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eeded                     |                   |                  |                       |                       |                  |                     |
|                           | $H_2S$ (Lb/hr) = Vo             | lume (Scf/h                     | r) * (1 lb- | mol/380.67             | 7) *(H <sub>2</sub> S n | nol%) * (34.             | .08 Lb H <sub>2</sub> S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (Lb-mol)                  |                   |                  |                       |                       |                  |                     |
|                           | on Factor 168.3                 |                                 |             |                        |                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |                  |                       |                       |                  |                     |
| 30/ 00/14/013/            |                                 | 2,                              |             | f) *(1Lb-Mo            | lo /360 e.              | 7 Scf\* / <i>EA (</i>    | 166 I P CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /Ib Mala\                 |                   |                  | 1                     |                       |                  |                     |
| 5                         | -                               | . ,                             | SCI/IVISC   | i) (Trn-IAIO           | 16/380.6                | / JUI) (64.(             | 700 FD 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sub>2</sub> , LD-IVIOIE) |                   |                  |                       |                       |                  |                     |
|                           | flare is 98% eff                |                                 |             |                        |                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |                  |                       |                       |                  |                     |
|                           | sing the gas analy              |                                 | L d         | <br>                   |                         |                          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u></u>                   |                   |                  |                       | 1 -                   |                  |                     |
|                           | ere, Y <sub>j</sub> = mole frac |                                 |             |                        |                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   | n aloxide        | e, etc.) ai           | na K <sub>j</sub> = n | iumper of ca     | arbon               |
|                           | ydrocarbon cons                 |                                 |             |                        | bon diox                | ide, 2 for e             | thane, 3 f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | or propane                | e, etc.           |                  | I                     |                       |                  |                     |
|                           | d to be "lightly s              |                                 |             |                        |                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |                  |                       | $\square$             |                  | -                   |
| " Hexane is a H           | IAP. Assume Hex                 | canes+ or He                    | exane are   | HAPS                   |                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |                  |                       |                       |                  |                     |

### LIFT-2

| LIF I-Z           |               |             |             |          |                  |                    |              |            |                              |                 |            |              |                   |                   |       |
|-------------------|---------------|-------------|-------------|----------|------------------|--------------------|--------------|------------|------------------------------|-----------------|------------|--------------|-------------------|-------------------|-------|
|                   |               | L           | DATA:       |          |                  |                    |              |            |                              |                 |            |              |                   |                   |       |
|                   |               |             | 13          | 3-11 Gas | Lift (LIFT-2     | •                  |              |            |                              | AP-42           | Emission   |              |                   |                   |       |
| ENGINE TYP        |               | =           | 4SF         |          | N                | G                  |              |            |                              | 1               | (lb/MMBtu  | ı)           |                   |                   |       |
| FUEL HEAT         |               | =           | 1,462       | Btu/Scf  |                  |                    | Type         | PM         | SO <sub>2</sub> <sup>1</sup> | NO <sub>X</sub> | со         | voc          | CH <sub>2</sub> O | Other I           |       |
| FUEL H2S C        | ONTENT        | =           |             | ppmv     |                  |                    | Diesel       | 3.10E-1    | [By Mass]                    | 4.41E+0         | 9.50E-1    | 3.50E-1      | 1.18E-3           | 2.691             |       |
| MAXIMUM EN        | IGINE HP      | =           | 203         |          |                  |                    | 2SLB         |            |                              | 3.17E+0         |            | 1.20E-1      | 5.52E-2           | 2.531             |       |
| ENGINE OP         |               | =           | 8,760       | Hr       |                  |                    | 4SLB         |            |                              | 4.08E+0         |            | 1.18E-1      | 5.28E-2           | 2.10              |       |
| ENGINE RAT        | ING           | =           | 1.62        | MMBtu/hi |                  |                    | 4SRB         | 9.50E-3    | 5.88E-4                      | 2.27E+0         | 3.72E+0    | 2.96E-2      | 2.05E-2           | 1.201             | E-2   |
| BRAKE-SPE         |               | =           | 8,000       | Btu/     |                  |                    |              |            |                              | 98 Subpa        |            |              |                   | GW                | P     |
| FUEL CONS         |               |             |             | HP-hr    |                  |                    |              | Greenh     |                              | Emission        | Factors    |              |                   | N <sub>2</sub> O= | 298   |
| CALCULATI         | ON BASIS      | =           |             |          | d Unconti        |                    |              |            |                              | C-1 & C-2       |            |              |                   | CO <sub>2</sub> = | 1     |
| EMISSION F        |               |             |             |          | URER'S E         | F                  |              |            | (kg/N                        | MBtu)           |            |              |                   | CH <sub>4</sub> = | 25    |
| <u>(EF</u>        |               |             | Uncont      | rolled   | Contr            | olled              |              |            | N₂O                          | CO <sub>2</sub> | <u>CH₄</u> |              |                   |                   |       |
| NO                | x             | =           | 16.57       | g/HP-hr  | 1                | g/HP-hr            |              | Diesel     | 0.0006                       | 75.04           | 0.003      |              |                   |                   |       |
| CC                | )             | =           | 16.57       | g/HP-hr  | 2                | g/HP-hr            |              | NG         | 0.0001                       | 53.06           | 0.001      |              |                   |                   |       |
| VO                | 0             | =           | 0.12        | g/HP-hr  |                  | g/HP-hr            |              | LPG        | 0.0006                       | 62.72           | 0.003      |              |                   |                   |       |
| CH <sub>2</sub>   | 0             | =           | 0.25        | g/HP-hr  |                  | g/HP-hr            |              | Propane    | 0.0006                       | 61.46           | 0.003      |              |                   |                   |       |
| СН                | 4             | =           | 1.02        | g/HP-hr  |                  | g/HP-hr            |              |            |                              |                 |            |              |                   |                   |       |
|                   |               | С           | ontrolled a | nd Unco  | ntrolled 20      | 3 HP Engi          | ne Emis      | sions Cal  | culations                    |                 |            |              |                   |                   |       |
|                   |               |             |             |          |                  |                    |              |            |                              |                 |            | Uncont       | rolled            | Contro            | olled |
| РМ                | 0.0095        | Lb          | 1.62        | MMBtu    | 8760 Hrs         | 1 Ton              |              | S.F.       |                              |                 |            | 0.07         | Tons              | 0.07              | Tons  |
| PIVI              | MMI           | 3tu         | Н           | r        | Year             | 2000 Lb            |              |            | A                            |                 | = `        | Yea          | ar                | Yea               | ar    |
|                   |               |             |             |          |                  |                    |              |            |                              |                 |            |              |                   |                   |       |
| SO <sub>2</sub>   | 0.0006        | lb          |             |          | 8760 Hrs         | loctoriorioriorio. |              | S.F.       | Control Control              | ppmv S          |            |              | Tons              |                   | Tons  |
| 2                 | MMI           | 3tu         | Н           | r        | Year             | 2000 Lb            |              |            | 3.44                         | ppmv S          |            | Yea          | ar                | Yea               | ar    |
|                   | 16 E7         | a           | 202.00      | LID      | 116              | 8.760              | Шr           | 1 Ton      |                              | C.E             |            | 22.40        | Tons              | 1 06              | Tons  |
| NO <sub>X</sub>   | 16.57<br>HP-  |             | 203.00      | ПР       | 1 Lb<br>453.6 g  | 8,760<br>Yea       | 4000         | 2000 Lb    | -                            | S.F.            | =          | 32.46<br>Yea |                   | Yea               |       |
|                   | ПГ-           | П           |             |          | 455.0 g          | 160                | ai           | 2000 LD    |                              |                 |            | 160          | 21                | 166               | 21    |
|                   | 16.57         | g           | 203.00      | HP       | 1 Lb             | 8,760              | Hr           | 1 Ton      |                              | S.F.            |            | 32.48        | Tons              | 3.92              | Tons  |
| со                | HP-           | Hr          |             |          | 453.6 g          | Yea                | ar           | 2000 Lb    | 7                            |                 | =          | Yea          | ar                | Yea               | ar    |
|                   |               |             |             |          |                  |                    |              |            |                              |                 |            |              |                   |                   |       |
| voc               | 0.12          |             | 203.00      | HP       | 1 Lb             | 8,760              | 1            | 1 Ton      |                              | S.F.            |            |              | Tons              |                   | Tons  |
|                   | HP-           | Hr          |             |          | 453.6 g          | Yea                | ar           | 2000 Lb    |                              |                 |            | Yea          | ar                | Yea               | ar    |
|                   | 0.2500        | a           | 203.00      | UD       | 1 Lb             | 8.760              | Hr           | 1 Ton      |                              | S.F.            |            | 0.40         | Tons              | 0.40              | Tons  |
| CH <sub>2</sub> O | 0.2300<br>HP- | CACOUNTY TO | 203.00      | ПЕ       | 453.6 g          | Yea                |              | 2000 Lb    |                              | З.Г.            | - =        | Yea          |                   | Yea               |       |
|                   |               | П           |             |          | 455.0 g          | 160                | al .         | 2000 LD    |                              |                 |            | 100          | 21                | 166               | 21    |
| non-CH₂O          | 0.0120        | lb          | 1.62        | MMBtu    |                  | 8,760              | Hr           | 1 Ton      |                              | S.F.            |            | 0.09         | Tons              | 0.09              | Tons  |
| HAPs              | MMI           | 3tu         | H           | r        | -                | Yea                | ar           | 2000 Lb    |                              |                 | =          | Yea          | ar                | Yea               | ar    |
|                   |               |             |             |          |                  |                    |              |            |                              |                 |            |              |                   |                   |       |
| CO <sub>2</sub>   | 1.62          | MMBtu       | 53.06       |          | 0.001 Me         | etric Ton          | 8,760        | Hr         | 1.10231                      |                 |            | 832.07       |                   | 832.07            |       |
| 002               | H             |             | MMI         | 3tu      | k                | g                  | γ            | 'ear       | 1 M                          | Ton             |            | Yea          | ar                | Yea               | ar    |
|                   | 4.00          | NANAD+      | 0.0004      | Lan /    | I 0 001 14       | atria Tan          | 0.700        | 11         | 4 40004                      | T               |            | 0.00         | Tons              | 0.00              | Tons  |
| N <sub>2</sub> O  |               | MMBtu       | 0.0001      |          | 101010017        | etric Ton          | <i>8,760</i> |            | 1.10231                      | Tons            | =          | Vea          |                   | Vea               |       |
|                   | Hı            |             | ММ          | วเน      | , x              | g                  | r            | 'ear       | I IVI                        | 1011            |            | 160          | 21                | 160               | 21    |
|                   | 1.02          | g           | 203.000     | HP       | 1 1              | Lb                 | 8,760        | Hr         | 1                            | Ton             |            | 2.00         | Tons              | 2.00              | Tons  |
| CH₄               | HP-           | _           |             |          |                  | .6 g               | -            | 'ear       |                              | Lbs             | =          | Yea          |                   | Yea               |       |
|                   |               |             |             |          |                  | _                  |              |            |                              |                 |            |              |                   |                   |       |
|                   | 832.07        | Tons        |             | 0.0016   | Tons             |                    |              | 1.9994     | To                           | ns              | _          | 834.07       | Tons              | 834.07            | Tons  |
| Mass Sum          |               | ear         | +           |          | Y                | 'ear               |              | _ <b>_</b> | Yea                          | ar              | Yea        | ar           |                   |                   |       |
|                   | CC            | )2          |             |          | N <sub>2</sub> O |                    |              | (          | CH₄                          |                 |            |              |                   |                   |       |
|                   |               |             |             |          |                  |                    |              |            |                              |                 |            |              |                   |                   |       |
|                   | 832.07        |             |             |          | TPY*298          | +                  |              | 1.999      |                              | <b>/</b> *25    | =          | 882.53       |                   | 882.53            |       |
| CO₂e              | 832.          |             | +           | 0        | .47              | L.                 |              | 49         | 9.98                         |                 |            | Yea          | ar                | Yea               | ar    |
|                   | CC            | )2          |             |          | N <sub>2</sub> O |                    |              | (          | CH₄                          |                 |            |              |                   |                   |       |

<sup>&</sup>lt;sup>1</sup> EPA AP-42 factors assume gas to have 2000 gr S/MMScf (at EPA STP). This equates to 3.44 ppmv S, assuming ideal gas. AP-42 factor can be corrected to sulfur value of facility gas by comparing actual sulfur values to EPA reference point. Assume ppmv H<sub>2</sub>S = ppmv S (true if H<sub>2</sub>S = TRS and TRS is entirely monosulfur compounds).

### GEN-2

| GEN-2             |           |                | DATA:      |                    |                        |             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                   |                      |           |                |                   |                   |          |
|-------------------|-----------|----------------|------------|--------------------|------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------|----------------------|-----------|----------------|-------------------|-------------------|----------|
|                   |           |                |            | 11 Gener           | rator (GEN-            | -2)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                   | AD-42                | Emission  | Factors        |                   |                   |          |
| ENGINE TYP        | ) <u></u> | =              | 4SF        |                    | •                      | G<br>G      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                   | AF-42                | (lb/MMBtu |                |                   |                   |          |
| FUEL HEAT         |           | =              |            | Btu/Scf            |                        | u           | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PM         | SO <sub>2</sub> 1 | NO <sub>x</sub>      | CO        | voc            | CH <sub>2</sub> O | Other             | НΛОс     |
| FUEL H2S C        |           | =              | - 1        | ppmv               |                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | _                 | 4.41E+0              |           | 3.50E-1        | 1.18E-3           | 2.69              |          |
| MAXIMUM EN        |           | =              | 68         | • •                |                        |             | 2SLB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                   | 3.17E+0              |           | 1.20E-1        | 5.52E-2           | 2.53              |          |
| ENGINE OP         |           | =              | 8,760      |                    |                        |             | 4SLB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.71E-5    | 5.88E-4           |                      |           | 1.18E-1        | 5.28E-2           | 2.10              |          |
| ENGINE RAT        |           | =              |            | MMBtu/hr           |                        |             | 4SRB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                   |                      | 3.72E+0   |                | 2.05E-2           | 1.20              |          |
| BRAKE-SPE         |           |                | 0.54       |                    |                        |             | 4300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                   |                      |           | 2.90L-2        | 2.00L Z           | GW                |          |
| FUEL CONS         |           | =              | 8,000      | Btu/<br>HP-hr      |                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                   | 98 Subpa<br>Emission |           |                |                   | N <sub>2</sub> O= | 298      |
| CALCULATI         |           | =              | Cambu      |                    | <mark>d Unconti</mark> | ام ما ا     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                   | C-1 & C-2            |           |                |                   | CO <sub>2</sub> = | 1        |
| EMISSION F        |           | -              |            |                    | URER'S E               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                   | MBtu)                |           |                |                   | CH <sub>4</sub> = | 25       |
| (EF               |           |                | Uncont     |                    | Contr                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | N <sub>2</sub> O  | CO <sub>2</sub>      | CH₄       |                |                   | 0114=             | 23       |
| NO<br>NO          |           | =              |            | g/HP-hr            | Oona                   | g/HP-hr     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Diesel     | 0.0006            | 75.04                | 0.003     |                |                   |                   |          |
| CC                |           |                |            |                    |                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NG         |                   | 53.06                |           |                |                   |                   |          |
| VO                |           | =              |            | g/HP-hr<br>g/HP-hr |                        | g/HP-hr     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LPG        | 0.0001            | ACCESS.              | 0.001     |                |                   |                   |          |
|                   |           | =              |            | g/HP-nr<br>g/HP-hr |                        | g/HP-hr     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 400        | 0.0006            | 62.72                | 0.003     |                |                   |                   |          |
| CH <sub>2</sub>   | -         | =              | 0.07       |                    |                        | g/HP-hr     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Propane    | 0.0006            | 61.46                | 0.003     |                |                   |                   |          |
| CH                | 14        | =              | `antrallad | g/HP-hr            | ntrolled 68            | g/HP-hr     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | alana Cala | latiana           |                      |           |                |                   |                   |          |
|                   |           |                | on a one a | and Onco           | illi olled od          | o ne ciigii | ie cilis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SIONS Care | uiations          |                      |           |                |                   | 0 1               | - 111    |
|                   |           |                |            |                    | <br>  <i>!!</i>        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                   |                      |           | Uncon          |                   | Contro            |          |
| PM                | 0.0095    |                |            |                    | 8760 Hrs               |             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S.F.       | - 4               |                      | =         | Montoclookook. | Tons              |                   | Tons     |
|                   | MMI       | 3tu            | Н          | r                  | Year                   | 2000 Lb     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                   |                      |           | Ye             | ar                | Yea               | ar       |
|                   | 0.0006    | lh             | 0.54       | MMBtu              | 8760 Hrs               | 1 Ton       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S.F.       | 1                 | ppmv S               |           | 0.00           | Tons              | 0.00              | Tons     |
| SO <sub>2</sub>   | MMI       |                | 0.54<br>H  |                    | Year                   | 2000 Lb     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J.1 .      | popoopoopooo.     | ppmv S               | =         | Ye             |                   | Yea               |          |
|                   | IVIIVII   | olu            | П          | l                  | I Gai                  | 2000 LD     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 3.44              | ppiliv 3             |           | 100            | 21                | 100               | a 1      |
|                   | 14.4      | g              | 68.00      | HP                 | 1 Lb                   | 8,760       | Hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 Ton      | 1                 | S.F.                 |           | 9.46           | Tons              | 9.46              | Tons     |
| NO <sub>X</sub>   | HP-       | _              |            |                    | 453.6 g                | Yea         | ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2000 Lb    |                   |                      | =         | Ye             | ar                | Yea               | ar       |
|                   |           |                |            |                    |                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                   |                      |           |                |                   |                   |          |
| co                | 16.3      | g              | 68.00      | HP                 | 1 Lb                   | 8,760       | Hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 Ton      |                   | S.F.                 |           | 10.70          | Tons              | 10.70             | Tons     |
|                   | HP-       | Hr             |            |                    | 453.6 g                | Yea         | ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2000 Lb    |                   |                      | _         | Ye             | ar                | Yea               | ar       |
|                   |           |                |            |                    |                        | 0.700       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - T        |                   | 0.5                  |           | 4.07           | T                 | 4.07              | <b>T</b> |
| voc               | 3.00      | _              | 68.00      | HP                 | 1 Lb                   | 8,760       | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 Ton      |                   | S.F.                 | =         | 1.97<br>Ye:    | Tons              | 1.97<br>Yea       | Tons     |
|                   | HP-       | Hr             | Do         |                    | 453.6 g                | Yea         | ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2000 Lb    |                   |                      |           | Yes            | ar                | Yea               | ar       |
|                   | 0.0700    | a I            | 68.00      | HP                 | 1 Lb                   | 8.760       | Hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 Ton      |                   | S.F.                 |           | 0.05           | Tons              | 0.05              | Tons     |
| CH <sub>2</sub> O | HP-       |                | 00.00      | 111                | 453.6 g                | Yea         | DESCRIPTION OF THE PROPERTY OF | 2000 Lb    |                   | 0.11.                | =         | Yes            |                   | Yea               |          |
|                   |           |                |            |                    | 1.00.0 9               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2000 20    |                   |                      |           |                |                   |                   |          |
| non-CH₂O          | 0.0120    | lb             | 0.54       | MMBtu              |                        | 8,760       | Hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 Ton      |                   | S.F.                 |           | 0.03           | Tons              | 0.03              | Tons     |
| HAPs              | MMI       | 3tu            | Н          | r                  |                        | Yea         | ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2000 Lb    |                   |                      | =         | Yea            | ar                | Yea               | ar       |
|                   |           |                |            |                    |                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                   |                      |           |                |                   |                   |          |
| CO <sub>2</sub>   |           | MMBtu          | 53.06      | _                  | 1011010010             | etric Ton   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 1.10231           |                      | =         | 278.72         |                   | 278.72            |          |
| _                 | Н         |                | MMI        | 3tu                | k                      | g           | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ear/       | 1 M               | Ton                  |           | Ye             | ar                | Yea               | ar       |
|                   | 0.54      | MMBtu          | 0.0001     | ka                 | 0 001 14               | etric Ton   | 8.760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Шr         | 1.10231           | Tone                 |           | 0.00           | Tons              | 0.00              | Tons     |
| N <sub>2</sub> O  | 0.34<br>H |                | MMI        |                    |                        | g           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 'ear       |                   | Ton                  | =         | Ye             |                   | Yea               |          |
|                   |           |                | IVHVII     | Jiu                |                        | 9           | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | cai        | 1 101             | 1011                 |           | 10.            | 41                | 100               | 41       |
| 011               | 0.54      | MMBtu          | 0.001      | kg                 | 0.001 Me               | etric Ton   | 8,760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hr         | 1.10231           | Tons                 |           | 0.01           | Tons              | 0.01              | Tons     |
| CH₄               | Н         | r              | MMI        | _                  | k                      | g           | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 'ear       |                   | Ton                  | =         | Ye             | ar                | Yea               |          |
|                   |           |                |            |                    |                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                   |                      |           |                |                   |                   |          |
|                   | 278.72    | Tons           |            | 0.0005             | Tons                   | ,           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0053     | To                | ns                   | _         | 278.73         | Tons              | 278.73            | Tons     |
| Mass Sum          | Ye        | ar             | +          | Y                  | ear                    | +           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y          | ear               |                      | _         | Ye             | ar                | Yea               | ar       |
|                   | CC        | ) <sub>2</sub> |            |                    | N <sub>2</sub> O       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (          | CH₄               |                      |           |                |                   |                   |          |
|                   |           |                |            |                    |                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                   |                      |           |                |                   |                   |          |
|                   | 278.72    |                |            |                    | TPY*298                | +           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.005      |                   | <b>/</b> *25         | _         | 279.01         |                   | 279.01            |          |
| CO <sub>2</sub> e | 278       |                | +          | 0.                 | .16                    | ·           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0          | 0.13              |                      |           | Ye             | ar                | Yea               | ar       |
|                   | CC        | $O_2$          |            |                    | N <sub>2</sub> O       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C          | CH₄               |                      |           |                |                   |                   |          |

<sup>&</sup>lt;sup>1</sup> EPA AP-42 factors assume gas to have 2000 gr S/MMScf (at EPA STP). This equates to 3.44 ppmv S, assuming ideal gas. AP-42 factor can be corrected to sulfur value of facility gas by comparing actual sulfur values to EPA reference point. Assume ppmv H<sub>2</sub>S = ppmv S (true if H<sub>2</sub>S = TRS and TRS is entirely monosulfur compounds).

### LIFT-3

|                       |               | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ATA:      |          |              |           |          |            |                        |                 |                 |               |         |                   |      |
|-----------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|--------------|-----------|----------|------------|------------------------|-----------------|-----------------|---------------|---------|-------------------|------|
|                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13        | 15 Power | r Oil (LIFT- | 3)        |          |            |                        | AP-42           | Emission        | Factors       |         |                   |      |
| ENGINE TYP            | 'E            | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4SF       |          | , N          | <i>'</i>  |          |            |                        | AI -12          | (lb/MMBtu       |               |         |                   |      |
| FUEL HEAT             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Btu/Scf  |              | _         | Туре     | PM         | SO <sub>2</sub> 1      | NO <sub>x</sub> | СО              | voc           | CH₂O    | Other I           | HAPs |
| FUEL H2S C            | ONTENT        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.50      | ppmv     |              |           | Diesel   | 3.10E-1    | [Bv Mass]              | 4.41E+0         | 9.50E-1         | 3.50E-1       | 1.18E-3 | 2.69              |      |
| MAXIMUM EN            | IGINE HP      | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 163       | • •      |              |           | 2SLB     | 3.84E-2    | . ,                    |                 |                 | 1.20E-1       | 5.52E-2 | 2.53              | E-2  |
| ENGINE OP             | HOURS         | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8,760     | Hr       |              |           | 4SLB     | 7.71E-5    | 5.88E-4                | 4.08E+0         |                 | 1.18E-1       | 5.28E-2 | 2.10              | E-2  |
| ENGINE RAT            | ING           | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.30      | MMBtu/hr |              |           | 4SRB     |            | 5.88E-4                | 2.27E+0         | 3.72E+0         | 2.96E-2       | 2.05E-2 | 1.20              | E-2  |
| BRAKE-SPE             | CIFIC         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Btu/     |              |           |          |            |                        | 98 Subpa        |                 |               |         | GW                | 'P   |
| FUEL CONS             |               | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8,000     | HP-hr    |              |           |          |            |                        | Emission        |                 |               |         | N <sub>2</sub> O= | 298  |
| CALCULATI             | ON BASIS      | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | Uncon    | trolled      |           |          |            | Tables C               | C-1 & C-2       |                 |               |         | CO <sub>2</sub> = | 1    |
| EMISSION F            | ACTORS        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M         |          | URER'S E     | F         |          |            | (kg/N                  | IMBtu)          |                 |               |         | CH <sub>4</sub> = | 25   |
| (EF                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Uncont    | rolled   | Contr        | olled     |          |            | N <sub>2</sub> O       | CO <sub>2</sub> | CH <sub>4</sub> |               |         |                   |      |
| NO                    | x             | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13.5      | g/HP-hr  | 0.5          | g/HP-hr   |          | Diesel     | 0.0006                 | 75.04           | 0.003           |               |         |                   |      |
| CC                    |               | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | g/HP-hr  |              | g/HP-hr   |          | NG A       | 0.0001                 | 53.06           | 0.001           |               |         |                   |      |
| VO                    | 2             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | g/HP-hr  |              | g/HP-hr   |          | LPG        | 0.0006                 | 62.72           | 0.003           |               |         |                   |      |
| CH <sub>2</sub>       |               | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | g/HP-hr  |              | g/HP-hr   |          | Propane    | 0.0006                 | 61.46           | 0.003           |               |         |                   |      |
| CH                    |               | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | g/HP-hr  |              | g/HP-hr   |          | Порашо     | 0.000                  | 01.10           | 0.000           |               |         |                   |      |
| 311                   | 4             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |          | 163 HP En    | •         | sions C  | alculation | IS                     |                 |                 |               |         |                   |      |
|                       |               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55        | 5        | , <u></u> 11 | J0        |          |            | -                      |                 |                 | Uncont        | rolled  |                   |      |
|                       | 0.0095        | lh l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 20      | MMBtu    | 8760 Hrs     | 1 Ton     |          | S.F.       |                        |                 |                 |               | Tons    |                   |      |
| PM                    | 0.0095<br>MMI |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.30<br>H |          | Year         | 2000 Lb   |          | Э.Г.       | -4                     |                 | = "             | Yea           |         |                   |      |
|                       | IVIIVII       | olu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | П         |          | rear         | 2000 LD   |          |            |                        |                 |                 | 10            | 21      |                   |      |
|                       | 0.0006        | lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.30      | MMBtu    | 8760 Hrs     | 1 Ton     |          | S.F.       | 4.5                    | ppmv S          |                 | 0.00          | Tons    |                   |      |
| SO <sub>2</sub>       | MMI           | 3tu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Н         |          | Year         | 2000 Lb   |          |            | NAME OF TAXABLE PARTY. | ppmv S          | =               | Yea           | ar      |                   |      |
|                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |              |           |          |            |                        |                 |                 |               |         |                   |      |
| NO <sub>x</sub>       | 13.5          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 163.00    | HP       | 1 Lb         | 8,760     | Hr       | 1 Ton      |                        | S.F.            | =               | 21.25         | Tons    |                   |      |
| ,                     | HP-           | Hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |          | 453.6 g      | Yea       | ar       | 2000 Lb    |                        |                 |                 | Yea           | ar      |                   |      |
|                       | 47            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100.00    | LID      | 4.11         | 0.700     | Lle      | 1 Ton      |                        | 0.5             |                 | 00.70         | T       |                   |      |
| co                    | 17<br>HP-     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 163.00    | HP       | 1 Lb         | 8,760     | 10010010 | 1 Ton      |                        | S.F.            | =               | 26.76<br>Yea  | Tons    |                   |      |
|                       | HP-           | Hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |          | 453.6 g      | Yea       | वा       | 2000 Lb    |                        |                 |                 | 10            | ar      |                   |      |
|                       | 0.35          | q I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 163.00    | HP       | 1 Lb         | 8,760     | Hr       | 1 Ton      |                        | S.F.            |                 | 0.55          | Tons    |                   |      |
| VOC                   | HP-           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |          | 453.6 g      | Yea       | 1000     | 2000 Lb    |                        |                 | - =             | Yea           | ar      |                   |      |
|                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |              |           |          |            |                        |                 |                 |               |         |                   |      |
| CH₂O                  | 0.0500        | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 163.00    | HP       | 1 Lb         | 8,760     | Hr       | 1 Ton      |                        | S.F.            | - =             | 0.08          | Tons    |                   |      |
| O112O                 | HP-           | Ĥr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |          | 453.6 g      | Yea       | ar       | 2000 Lb    |                        |                 | _               | Yea           | ar      |                   |      |
|                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |              |           |          | 1          |                        |                 |                 |               | _       |                   |      |
| non-CH <sub>2</sub> O | 0.0120        | in the same of the |           | MMBtu    |              | 8,760     |          | 1 Ton      |                        | S.F.            | =               |               | Tons    |                   |      |
| HAPs                  | MMI           | 3tu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Н         |          |              | Yea       | ar       | 2000 Lb    |                        |                 |                 | Yea           | ar      |                   |      |
|                       | 1.30          | MMBtu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53.06     | ka       | 0 001 Me     | etric Ton | 8 760    | Hr         | 1.10231                | Tons            |                 | 668.12        | Tons    |                   |      |
| CO <sub>2</sub>       | H             | Victoria de la constanta de la | MMI       |          | k            |           |          | 'ear       |                        | Ton             | - =             | Yea           |         |                   |      |
|                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |              | 9         |          |            |                        |                 |                 |               |         |                   |      |
| N <sub>2</sub> O      | 1.30          | MMBtu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0001    | kg       | 0.001 Me     | etric Ton | 8,760    | Hr         | 1.10231                | Tons            |                 | 0.00          | Tons    |                   |      |
| N <sub>2</sub> O      | H             | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MMI       | 3tu      | k            | g         | γ        | 'ear       | 1 M                    | Ton             | =               | Yea           | ar      |                   |      |
|                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |              |           |          |            |                        |                 |                 |               |         |                   |      |
| CH₄                   |               | MMBtu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.001     |          |              | etric Ton | 8,760    |            | 1.10231                |                 | =               |               | Tons    |                   |      |
|                       | H             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MMI       | 3tu      | k,           | g         | Y        | 'ear       | 1 M                    | Ton             |                 | Yea           | ar      |                   |      |
|                       | 660 10        | Tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | 0.0013   | Tono         |           |          | 0.0100     | т-                     | no              |                 | 668.13        | Tone    |                   | -    |
| Maco Sum              | 668.12        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +         |          |              | +         |          | 0.0126     |                        | ns              | - =             | 668.13<br>Yea |         |                   |      |
| Mass Sum              | Yea           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          | ear          |           |          |            | ear                    |                 |                 | 16            | a1      |                   |      |
|                       | CC            | /2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |          | N₂O          |           |          | (          | CH₄                    |                 |                 |               |         |                   |      |
|                       | 668.12        | TPY*1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | 0.0013   | TPY*298      |           |          | 0.013      | TP\                    | /*25            |                 | 668.81        | Tons    |                   |      |
| CO₂e                  | 668.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +         |          | 38           | +         |          |            | .31                    |                 | =               | Yea           |         |                   |      |
| JU20                  | 550           | )2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | J.       | -            |           |          | •          | -                      |                 |                 |               |         |                   |      |

<sup>&</sup>lt;sup>1</sup> EPA AP-42 factors assume gas to have 2000 gr S/MMScf (at EPA STP). This equates to 3.44 ppmv S, assuming ideal gas. AP-42 factor can be corrected to sulfur value of facility gas by comparing actual sulfur values to EPA reference point. Assume ppmv H<sub>2</sub>S = ppmv S (true if H<sub>2</sub>S = TRS and TRS is entirely monosulfur compounds).

### GEN-3

| GEN-3             |               |                  | DATA:          |           |                  |              | ī               |            |                   |                 |                 |         |                   |                   |            |
|-------------------|---------------|------------------|----------------|-----------|------------------|--------------|-----------------|------------|-------------------|-----------------|-----------------|---------|-------------------|-------------------|------------|
|                   |               | 1                |                | 15 gener  | ator (GEN-       | -3)          |                 |            |                   | AD 40           | Fusicaion       | Factors |                   |                   |            |
| ENGINE TYP        | )E            |                  |                | ŭ         | •                | G            |                 |            |                   | AP-42           | (lb/MMBtu       |         |                   |                   |            |
| FUEL HEAT         |               | =                | 4SF            | Btu/Scf   |                  | G            | Туре            | PM         | SO <sub>2</sub> 1 | NO <sub>x</sub> | CO              | voc     | CH <sub>2</sub> O | Other             | UADo.      |
| FUEL H2S C        |               |                  |                | ppmv      |                  |              | Diesel          |            |                   | 4.41E+0         |                 | 3.50E-1 | 1.18E-3           | 2.69              |            |
| MAXIMUM EN        |               | =                | 145            | • •       |                  |              | 2SLB            | 3.84E-2    | 5.88E-4           |                 |                 | 1.20E-1 | 5.52E-2           | 2.53              |            |
| ENGINE OP         |               | =                | 8,760          |           |                  |              | 4SLB            | 7.71E-5    | 5.88E-4           | 4.08E+0         |                 | 1.18E-1 | 5.28E-2           | 2.10              |            |
| ENGINE RAT        |               | =                | ,              | MMBtu/hr  |                  |              | 4SRB            | 9.50E-3    |                   | 2.27E+0         |                 | 2.96E-2 | 2.05E-2           | 1.20              |            |
| BRAKE-SPE         | -             | _                |                | Btu/      |                  |              | 40110           |            |                   | 98 Subpa        |                 | 2.30L-2 | 2.002 2           | GW                |            |
| FUEL CONS         |               | =                | 8,000          | HP-hr     |                  |              |                 |            |                   | Emission        |                 |         |                   | N <sub>2</sub> O= | 298        |
| CALCULATI         |               | =                | Contr          |           | d Unconti        | rollad       |                 |            |                   | C-1 & C-2       |                 |         |                   | CO <sub>2</sub> = | 1          |
| EMISSION F        |               | _                |                |           | URER'S E         |              |                 |            |                   | IMBtu)          |                 |         |                   | CH <sub>4</sub> = | 25         |
| (EF               |               |                  | Uncont         |           | Contr            |              |                 |            | N <sub>2</sub> O  | CO <sub>2</sub> | CH <sub>4</sub> |         |                   | 01.14             |            |
| NO                |               | =                |                | g/HP-hr   |                  | g/HP-hr      |                 | Diesel     | 0.0006            | 75.04           | 0.003           |         |                   |                   |            |
| CC                |               |                  |                | g/HP-hr   |                  | g/HP-hr      |                 | NG A       | 0.0001            | 53.06           | 0.003           |         |                   |                   |            |
| VOC               |               |                  |                | g/HP-hr   |                  | g/HP-hr      |                 | LPG        | 0.0001            | 62.72           | 0.001           |         |                   |                   |            |
| CH <sub>2</sub>   |               |                  |                | g/HP-hr   |                  | g/HP-hr      |                 | Propane    | 0.0006            | 61.46           | 0.003           |         |                   |                   |            |
| CH                |               |                  | 0.07           | g/HP-hr   | 0.07             | g/HP-hr      |                 | riopane    | 0.0000            | 01.40           | 0.003           |         |                   |                   |            |
| 011               | 4             | =<br>C           | ontrolled a    | -         | ntrolled 14      | _            | ne Fmis         | ssions Cal | culations         |                 |                 |         |                   |                   |            |
|                   |               |                  | ornir onload a | 000.      | in one i i       | 0 iii 2iigi  |                 | Joiono Gai | odia (iorio       |                 |                 | Uncont  | rolled            | Contr             | ollod      |
|                   | 0.0095        | l h              | 1 10           | MMBtu     | 8760 Hrs         | 1 Ton        |                 | 0 -        |                   |                 |                 |         | Tons              |                   | Tons       |
| PM -              | 0.0095<br>MMI |                  | 1.16<br>H      |           | Year             | 2000 Lb      | -               | S.F.       | - 4               | <b>-</b>        | =               | Ye      |                   | Yea               |            |
|                   | IVIIVII       | วเน              | П              | ſ         | rear             | 2000 Lb      |                 |            |                   |                 |                 | 1e      | ar                | 166               | <b>1</b> 1 |
|                   | 0.0006        | lb               | 1.16           | MMBtu     | 8760 Hrs         | 1 Ton        |                 | S.F.       | 4.5               | ppmv S          |                 | 0.00    | Tons              | 0.00              | Tons       |
| SO <sub>2</sub>   | MMI           |                  | H              |           | Year             | 2000 Lb      |                 |            |                   | ppmv S          | =               | Ye      | ar                | Yea               | ar         |
|                   |               | - 10             |                |           |                  |              |                 |            |                   | -               |                 |         |                   |                   |            |
| NO <sub>x</sub>   | 13.48         | g                | 145.00         | HP        | 1 Lb             | 8,760        | Hr              | 1 Ton      |                   | S.F.            | _ =             | 18.87   | Tons              | 1.40              | Tons       |
| ιιο <sub>χ</sub>  | HP-           | Hr               |                |           | 453.6 g          | Yea          | ar              | 2000 Lb    |                   |                 | _               | Ye      | ar                | Yea               | ar         |
|                   | 10.40         | _                | 1 15 00        | un        | 2.15             | 0.700        | Lir             | 1 Ton      |                   | 0.5             |                 | 10.05   | Tons              | 0.00              | Tons       |
| co                | 13.46<br>HP-  | -                | 145.00         | HP        | 1 Lb<br>453.6 g  | 8,760<br>Yea | BODODO.         | 2000 Lb    |                   | S.F.            | =               | Ye      |                   | Yea               |            |
|                   | пг-           | П                |                |           | 455.0 g          | 160          | عا<br>ا         | 2000 LD    |                   |                 |                 | 160     | 21                | 160               | 21         |
|                   | 0.22          | g                | 145.00         | HP        | 1 Lb             | 8,760        | Hr              | 1 Ton      |                   | S.F.            |                 | 0.31    | Tons              | 0.28              | Tons       |
| voc               | HP-           | Hr               |                |           | 453.6 g          | Yea          | ar              | 2000 Lb    |                   |                 | =               | Ye      | ar                | Yea               | ar         |
|                   |               |                  |                |           |                  |              |                 |            |                   |                 |                 |         |                   |                   |            |
| CH₂O              | 0.0700        | 1000             | 145.00         | HP        | 1 Lb             | 8,760        | Interested Pro- | 1 Ton      |                   | S.F.            |                 |         | Tons              |                   | Tons       |
| - 2-              | HP-           | Hr               |                |           | 453.6 g          | Yea          | ar              | 2000 Lb    |                   |                 |                 | Ye      | ar                | Yea               | ar         |
| non-CH₂O          | 0.0120        | lh l             | 1 16           | MMBtu     |                  | 8.760        | Hr              | 1 Ton      |                   | S.F.            |                 | 0.06    | Tons              | 0.06              | Tons       |
| HAPs              | MMI           | OCTOR<br>OCTORIO | 1.10<br>H      | Antologia |                  | 7ea          |                 | 2000 Lb    |                   | J.I .           | =               | Ye      |                   | Yea               |            |
| 12.0              | IVIIVI        | Jiu J            |                |           |                  | 700          |                 | 2000 20    |                   |                 |                 |         |                   |                   |            |
| 00                | 1.16          | MMBtu            | 53.06          | kg        | 0.001 Me         | etric Ton    | 8,760           | Hr         | 1.10231           | Tons            |                 | 594.34  | Tons              | 594.34            | Tons       |
| CO <sub>2</sub>   | H             |                  | MMI            | 3tu       | k                | g            | γ               | 'ear       | 1 M               | Ton             | =               | Yea     | ar                | Yea               | ar         |
|                   |               |                  |                |           |                  |              |                 |            |                   |                 |                 |         |                   |                   |            |
| N₂O               |               | MMBtu            | 0.0001         |           |                  | etric Ton    | -,              |            | 1.10231           |                 | =               |         | Tons              |                   | Tons       |
| -                 | H             |                  | MMI            | 3tu       | k                | g            | }               | ear/       | 1 M               | Ton             |                 | Ye      | ar                | Yea               | ar         |
|                   | 1 16          | MMBtu            | 0.001          | ka        | 0 001 1/4        | etric Ton    | 8.760           | Hr         | 1.10231           | Tone            |                 | 0.01    | Tons              | 0.01              | Tons       |
| CH₄ -             | H             |                  | MMI            |           |                  | g            | ,               | /ear       |                   | Ton             | =               | Yes     |                   | Yea               |            |
|                   | 111           |                  | 1411411        | _ (       | <u> </u>         | <i>3</i>     |                 | Jui        | , ,,,,            |                 |                 | 160     |                   | 130               |            |
|                   | 594.34        | Tons             |                | 0.0011    | Tons             |              |                 | 0.0112     | To                | ns              |                 | 594.35  | Tons              | 594.35            | Tons       |
| Mass Sum          | Ye            | ar               | +              |           | ear              | +            |                 |            | ear               |                 | =               | Ye      |                   | Yea               |            |
|                   | CC            |                  |                |           | N <sub>2</sub> O |              |                 |            | CH₄               |                 |                 |         |                   |                   |            |
|                   |               |                  |                |           | Ē.               |              |                 |            |                   |                 |                 |         |                   |                   |            |
|                   | 594.34        | TPY*1            |                | 0.0011    | TPY*298          |              |                 | 0.011      | TP                | <b>/</b> *25    | _               | 594.95  | Tons              | 594.95            |            |
| CO <sub>2</sub> e | 594           | 34               | +              | 0         | .33              | +            |                 | 0          | .28               |                 | =               | Yea     | ar                | Yea               | ar         |
|                   | CC            | )2               |                |           | N <sub>2</sub> O |              |                 |            | CH₄               |                 |                 |         |                   |                   |            |

<sup>&</sup>lt;sup>1</sup> EPA AP-42 factors assume gas to have 2000 gr S/MMScf (at EPA STP). This equates to 3.44 ppmv S, assuming ideal gas. AP-42 factor can be corrected to sulfur value of facility gas by comparing actual sulfur values to EPA reference point. Assume ppmv H<sub>2</sub>S = ppmv S (true if H<sub>2</sub>S = TRS and TRS is entirely monosulfur compounds).

### LIFT-4

| LIFI-4                  |           |                | 1474        |               |                                    |           | 1               |              |                              |                      |            |              |                   |                   |            |
|-------------------------|-----------|----------------|-------------|---------------|------------------------------------|-----------|-----------------|--------------|------------------------------|----------------------|------------|--------------|-------------------|-------------------|------------|
|                         |           | L              | DATA:       | 10 10 0       | ower Oil                           |           |                 |              |                              |                      |            |              |                   |                   |            |
|                         | .=        |                |             |               |                                    |           |                 |              |                              | AP-42                | Emission   |              |                   |                   |            |
| ENGINE TYP              |           | =              | 4SF         |               | N                                  | G         | T               |              | 00.1                         | NO                   | (lb/MMBtu  | <del>,</del> | 011.0             |                   |            |
| FUEL HEAT               |           | =              | ĺ,          | Btu/Scf       |                                    |           | Туре            | PM           | SO <sub>2</sub> <sup>1</sup> | NO <sub>X</sub>      | CO         | VOC          | CH <sub>2</sub> O | Other I           |            |
| FUEL H2S C              |           | =              |             | ppmv          |                                    |           | Diesel          |              |                              | 4.41E+0              |            | 3.50E-1      | 1.18E-3           | 2.69              |            |
| MAXIMUM EN              |           | =              | 163         |               |                                    |           | 2SLB            | 3.84E-2      |                              | 3.17E+0              |            | 1.20E-1      | 5.52E-2           | 2.53              |            |
| ENGINE OP<br>ENGINE RAT |           | =              | 8,760       |               |                                    |           | 4SLB            |              |                              | 4.08E+0              |            | 1.18E-1      | 5.28E-2           | 2.10              |            |
|                         | -         | =              | 1.30        | MMBtu/hi      |                                    |           | 4SRB            |              |                              | 2.27E+0              |            | 2.96E-2      | 2.05E-2           | 1.20              |            |
| BRAKE-SPE               |           | =              | 8,000       | Btu/<br>HP-hr |                                    |           |                 |              |                              | 98 Subpa<br>Emission |            |              |                   | GW                |            |
| CALCULATI               |           |                |             |               |                                    |           |                 | Greenin      |                              | C-1 & C-2            | raciois    |              |                   | N <sub>2</sub> O= | 298        |
|                         |           | =              |             |               | <mark>d Unconti</mark><br>URER'S E |           |                 |              |                              | -                    |            |              |                   | CO <sub>2</sub> = | 1<br>25    |
| EMISSION F              |           |                | Uncont      |               | -                                  |           |                 |              |                              | MBtu)                | 011        |              |                   | Сп₄=              | 25         |
|                         |           |                |             |               | Contr                              | _         |                 | Disease      | N <sub>2</sub> O             | CO <sub>2</sub>      | <u>CH₄</u> |              |                   |                   |            |
| NO                      |           | =              |             | g/HP-hr       |                                    | g/HP-hr   |                 | Diesel       | 0.0006                       | 75.04                | 0.003      |              |                   |                   |            |
| CC                      |           | =              |             | g/HP-hr       | 2                                  | g/HP-hr   |                 | NG           | 0.0001                       | 53.06                | 0.001      |              |                   |                   |            |
| VO                      |           | =              |             | g/HP-hr       |                                    | g/HP-hr   |                 | LPG          | 0.0006                       | 62.72                | 0.003      |              |                   |                   |            |
| CH <sub>2</sub>         |           | =              |             | g/HP-hr       |                                    | g/HP-hr   | -               | Propane      | 0.0006                       | 61.46                | 0.003      |              |                   |                   |            |
| СН                      | 4         | =              |             | g/HP-hr       |                                    | g/HP-hr   | 4.              |              |                              |                      |            |              |                   |                   |            |
|                         |           | C              | ontrolled a | na Unco       | ntrolled 16                        | 3 HP Engi | ne Emis         | ssions Cal   | culations                    | ,                    |            |              |                   |                   | <u> </u>   |
|                         |           |                |             |               |                                    |           |                 |              |                              |                      |            | Uncon        |                   | Contro            |            |
| PM                      | 0.0095    |                |             |               | 8760 Hrs                           |           | 4               | S.F.         | A                            |                      | =          | Hedeleles.   | Tons              |                   | Tons       |
|                         | MMI       | 3tu            | H           | <u> </u>      | Year                               | 2000 Lb   |                 | A            |                              |                      |            | Ye           | ar                | Yea               | ar         |
|                         | 0.0006    | lh             | 1 20        | MMBtu         | 8760 Hrs                           | 1 Ton     |                 | S.F.         | 6.16667                      | nnmu C               |            | 0.01         | Tons              | 0.01              | Tons       |
| SO <sub>2</sub>         |           |                |             |               | Year                               | 2000 Lb   |                 | <b>З.</b> Г. | A INTERPOSED .               |                      | =          | Ye           |                   | Yea               |            |
|                         | MMI       | วเน<br>        | H           |               | rear                               | 2000 LD   |                 |              | 3.44                         | ppmv S               |            | 16           | aı                | 160               | aı         |
|                         | 13.5      | g              | 163.00      | HP            | 1 Lb                               | 8,760     | Hr              | 1 Ton        |                              | S.F.                 |            | 21.25        | Tons              | 0.79              | Tons       |
| NO <sub>X</sub>         | HP-       | _              |             |               | 453.6 g                            | Yea       | 760             | 2000 Lb      |                              |                      | =          | Ye           | ar                | Yea               | ar         |
|                         |           |                |             |               |                                    |           |                 |              |                              |                      |            |              |                   |                   |            |
| co                      | 17        | g              | 163.00      | HP            | 1 Lb                               | 8,760     | Hr              | 1 Ton        |                              | S.F.                 | _          | 26.76        | Tons              | 3.15              | Tons       |
| 00                      | HP-       | Hr             |             |               | 453.6 g                            | Yea       | ar              | 2000 Lb      |                              |                      | _          | Ye           | ar                | Yea               | ar         |
|                         | 0.05      | -              | 100.00      | ı in          |                                    | 0.700     | 110             | 1 Tan        |                              | 0.5                  |            | 0.55         | Tana              | 0.55              | T          |
| voc                     | 0.35      |                | 163.00      | HP            | 1 Lb                               | 8,760     | 7000            | 1 Ton        |                              | S.F.                 | =          | Ve:          | Tons              | V.55              | Tons       |
|                         | HP-       | Hr             |             |               | 453.6 g                            | Yea       | ar              | 2000 Lb      |                              |                      |            | Te           | ar                | 165               | <b>a</b> ( |
|                         | 0.0500    | a I            | 163.00      | HP            | 1 Lb                               | 8.760     | Hr              | 1 Ton        |                              | S.F.                 |            | 0.08         | Tons              | 0.08              | Tons       |
| CH <sub>2</sub> O       | HP-       |                |             |               | 453.6 g                            | Yea       | foliolioliolio- | 2000 Lb      |                              |                      | =          | Ye           | ar                | Yea               |            |
|                         |           |                |             |               |                                    |           |                 |              |                              |                      |            |              |                   |                   |            |
| non-CH <sub>2</sub> O   | 0.0120    | lb             | 1.30        | MMBtu         |                                    | 8,760     | Hr              | 1 Ton        |                              | S.F.                 | _          | 0.07         | Tons              | 0.07              | Tons       |
| HAPs                    | MMI       | 3tu            | H           |               |                                    | Yea       | ar              | 2000 Lb      |                              |                      | _          | Ye           | ar                | Yea               | ar         |
|                         |           | MADE           |             |               |                                    |           | 0.700           |              |                              | _                    |            |              | _                 |                   | _          |
| CO <sub>2</sub>         |           | MMBtu          | 53.06       | _             |                                    | etric Ton | ,               |              | 1.10231                      |                      | =          | 668.12       |                   | 668.12            |            |
|                         | H         |                | MME         | 3tu           | l k                                | g         | Y               | ear ear      | 1 M                          | Ton                  |            | Ye           | ar                | Yea               | ar         |
|                         | 1.30      | MMBtu          | 0.0001      | ka            | 0 001 M                            | etric Ton | 8.760           | Hr           | 1.10231                      | Tons                 |            | 0.00         | Tons              | 0.00              | Tons       |
| N <sub>2</sub> O        | 1.00<br>H |                | MME         | D             | 6.001 l/k                          |           |                 | /ear         |                              | Ton                  | =          | Ye           |                   | Yea               |            |
|                         |           |                |             | Stu .         | ^                                  | 9         |                 |              | _ · · · · ·                  | 1011                 |            |              |                   |                   |            |
| CH₄                     | 1.30      | MMBtu          | 0.001       | kg            | 0.001 Me                           | etric Ton | 8,760           | Hr           | 1.10231                      | Tons                 |            | 0.01         | Tons              | 0.01              | Tons       |
| СП4                     | H         | r              | MME         | 3tu           | k                                  | g         | γ               | 'ear         | 1 M                          | Ton                  | =          | Ye           | ar                | Yea               | ar         |
|                         |           |                |             |               |                                    |           |                 |              |                              |                      |            |              |                   |                   |            |
|                         | 668.12    |                | +           | 0.0013        |                                    | +         |                 | 0.0126       |                              | ns                   |            | 668.13       |                   | 668.13            |            |
| Mass Sum                | Ye        |                | •           |               | ear                                |           |                 | Y            | 'ear                         |                      |            | Yea          | ar                | Yea               | ar         |
|                         | CC        | ) <sub>2</sub> |             |               | N <sub>2</sub> O                   |           |                 | (            | CH₄                          |                      |            |              |                   |                   |            |
|                         | 000 10    | TD\#4          |             | 0.0010        | TD\#000                            |           |                 | 0.010        | TO                           | /*OF                 |            |              | _                 |                   | _          |
|                         | 668.12    |                |             |               | TPY*298                            | +         |                 | 0.013        |                              | Y*25                 | =          | 668.81       |                   | 668.81            |            |
| CO <sub>2</sub> e       | 668.      |                | +           |               | .38                                |           |                 |              | 0.31                         |                      |            | Yea          | ar                | Yea               | ar         |
|                         | CC        | <b>)</b> 2     |             |               | N <sub>2</sub> O                   |           |                 | (            | CH₄                          |                      |            |              |                   |                   |            |

<sup>&</sup>lt;sup>1</sup> EPA AP-42 factors assume gas to have 2000 gr S/MMScf (at EPA STP). This equates to 3.44 ppmv S, assuming ideal gas. AP-42 factor can be corrected to sulfur value of facility gas by comparing actual sulfur values to EPA reference point. Assume ppmv H<sub>2</sub>S = ppmv S (true if H<sub>2</sub>S = TRS and TRS is entirely monosulfur compounds).

### GEN-4

| GEN-4             |               |        | DATA:     |                    |                        |           |                |              |                   |                      |           |               |                   |                   |          |
|-------------------|---------------|--------|-----------|--------------------|------------------------|-----------|----------------|--------------|-------------------|----------------------|-----------|---------------|-------------------|-------------------|----------|
|                   |               | Ī      |           | 13 Gener           | rator (GEN             | -4)       |                |              |                   | ΛD-42                | Emission  | Factors       |                   |                   |          |
| ENGINE TYP        | )F            | =      | 4SF       |                    | •                      | G         |                |              |                   | AI -72               | (lb/MMBtu |               |                   |                   |          |
| FUEL HEAT         |               | =      | ,         | Btu/Scf            |                        | u         | Туре           | РМ           | SO <sub>2</sub> 1 | NO <sub>x</sub>      | CO        | voc           | CH <sub>2</sub> O | Other             | ΠΛDc     |
| FUEL H2S C        |               |        |           | ppmv               |                        |           |                |              | _                 | 4.41E+0              |           | 3.50E-1       | 1.18E-3           | 2.69              |          |
| MAXIMUM EN        | -             | =      |           | HP                 |                        |           | 2SLB           |              |                   | 3.17E+0              |           | 1.20E-1       | 5.52E-2           | 2.53              |          |
| ENGINE OP         |               | =      | 8,760     |                    |                        |           | 4SLB           | 7.71E-5      | 5.88E-4           |                      |           | 1.18E-1       | 5.28E-2           | 2.10              |          |
| ENGINE RAT        |               | =      |           | MMBtu/hr           |                        |           | 4SRB           |              |                   |                      | 3.72E+0   |               | 2.05E-2           | 1.20              |          |
| BRAKE-SPE         | -             | _      | 7         |                    |                        |           | 43ND           |              |                   |                      |           | 2.90L-2       | 2.00L Z           | GW                |          |
| FUEL CONS         |               | =      | 8,000     | Btu/<br>HP-hr      |                        |           |                |              |                   | 98 Subpa<br>Emission |           |               |                   | N <sub>2</sub> O= | 298      |
| CALCULATI         |               | =      | Cambu     |                    | <mark>d Unconti</mark> | ام داام   |                |              |                   | C-1 & C-2            |           |               |                   | CO <sub>2</sub> = | 1        |
| EMISSION F        |               |        |           |                    | URER'S E               |           |                |              |                   | IMBtu)               |           |               |                   | CH <sub>4</sub> = | 25       |
| (EF               |               |        | Uncont    |                    | Contr                  |           |                |              | N <sub>2</sub> O  | CO <sub>2</sub>      | CH₄       |               |                   | 0114=             | 25       |
| NO<br>NO          |               | =      |           | g/HP-hr            |                        | g/HP-hr   |                | Diesel       | 0.0006            | 75.04                | 0.003     |               |                   |                   |          |
| CC                |               |        |           |                    |                        |           |                | NG           |                   | 53.06                |           |               |                   |                   |          |
| VO                |               | =      |           | g/HP-hr<br>g/HP-hr | '                      | g/HP-hr   |                | LPG          | 0.0001            | HOSPIGA.             | 0.001     |               |                   |                   |          |
|                   |               | =      |           |                    |                        | g/HP-hr   |                |              | 0.0006            | 62.72                | 0.003     |               |                   |                   |          |
| CH <sub>2</sub>   |               | =      | 0.1       | g/HP-hr            |                        | g/HP-hr   |                | Propane      | 0.0006            | 61.46                | 0.003     |               |                   |                   |          |
| CH                | 4             | =      | )         | g/HP-hr            |                        | g/HP-hr   | -4             | -1 O-1-      |                   |                      |           |               |                   |                   |          |
|                   |               |        | ontrolled | and Unco           | ntrolled 68            | HP Engir  | ie Emis        | sions Caid   | ulations          |                      |           |               |                   |                   | <u>.</u> |
|                   |               |        |           |                    |                        |           |                |              |                   |                      |           | Uncon         |                   | Contr             |          |
| PM                | 0.0095        |        |           |                    | 8760 Hrs               |           | 4              | S.F.         | 4                 |                      | =         | Hoolookookook | Tons              |                   | Tons     |
|                   | MMI           | 3tu    | Н         | r                  | Year                   | 2000 Lb   |                |              |                   | <b>P</b>             |           | Ye            | ar                | Yea               | ar       |
|                   | 0.0006        | lh     | 0.54      | MMBtu              | 8760 Hrs               | 1 Ton     |                | S.F.         | 6.16667           | nnmy C               |           | 0.00          | Tons              | 0.00              | Tons     |
| SO <sub>2</sub>   |               |        | 0.54<br>H |                    | Year                   | 2000 Lb   |                | <b>З.</b> Г. | 101001001000      |                      | =         | Ye            |                   | Yea               |          |
|                   | MMI           | วเน    | п         | ſ                  | rear                   | 2000 LD   |                |              | 3.44              | ppmv S               |           | 16            | 21                | 160               | aı       |
|                   | 14.4          | g      | 68.00     | HP                 | 1 Lb                   | 8.760     | Hr             | 1 Ton        |                   | S.F.                 |           | 9.46          | Tons              | 0.33              | Tons     |
| NO <sub>X</sub>   | HP-           | -      |           |                    | 453.6 g                | Yea       | 100            | 2000 Lb      |                   |                      | =         | Ye            | ar                | Yea               | ar       |
|                   |               |        |           |                    |                        |           |                |              |                   |                      |           |               |                   |                   |          |
| СО                | 16.3          | g      | 68.00     | HP                 | 1 Lb                   | 8,760     | Hr             | 1 Ton        |                   | S.F.                 | _         | 10.70         | Tons              | 0.66              | Tons     |
| 00                | HP-           | Hr     |           |                    | 453.6 g                | Yea       | ar             | 2000 Lb      |                   |                      | =         | Ye            | ar                | Yea               | ar       |
|                   |               |        |           |                    |                        |           |                | . =          |                   |                      |           |               | _                 |                   | _        |
| voc               | 0.50          | -      | 68.00     | HP                 | 1 Lb                   | 8,760     | 1000           | 1 Ton        |                   | S.F.                 | =         |               | Tons              |                   | Tons     |
|                   | HP-           | Hr     | b-        |                    | 453.6 g                | Yea       | ar             | 2000 Lb      |                   |                      |           | Ye            | ar                | Yea               | ar       |
|                   | 0.1000        | a 1    | 68.00     | HP                 | 1 Lb                   | 8.760     | Hr             | 1 Ton        |                   | S.F.                 |           | 0.07          | Tons              | 0.07              | Tons     |
| CH <sub>2</sub> O | 0.1000<br>HP- |        | 00.00     | 111                | 453.6 g                | 7ea       | Edological Car | 2000 Lb      |                   | J.1 .                | =         | Ye            |                   | Yea               |          |
|                   |               | ' "    |           |                    | 455.0 g                | 766       | ar .           | 2000 20      |                   |                      |           | 10.           | 41                |                   | u 1      |
| non-CH₂O          | 0.0120        | lb     | 0.54      | MMBtu              |                        | 8,760     | Hr             | 1 Ton        |                   | S.F.                 |           | 0.03          | Tons              | 0.03              | Tons     |
| HAPs              | MMI           | 3tu    | Н         | r                  |                        | Yea       | ar             | 2000 Lb      |                   |                      | =         | Yea           | ar                | Yea               | ar       |
|                   |               |        |           |                    |                        |           |                |              |                   |                      |           |               |                   |                   |          |
| CO <sub>2</sub>   | ***           | MMBtu  | 53.06     | _                  | 0.001 Me               | etric Ton | 8,760          | Hr           | 1.10231           | Tons                 | _         | 278.72        |                   | 278.72            |          |
| 302               | H             | r      | MMI       | 3tu                | k                      | g         | γ              | ear/         | 1 M               | Ton                  |           | Ye            | ar                | Yea               | ar       |
|                   | 0.54          | MANADA | 0.0004    |                    | 1 0 004 44             |           | 0.700          |              |                   | -                    |           |               | T                 |                   | <b>T</b> |
| N <sub>2</sub> O  |               | MMBtu  | 0.0001    | 400000             |                        | etric Ton | -,             |              | 1.10231           |                      | =         |               | Tons              |                   | Tons     |
|                   | H             | r      | ММ        | 3tu                | K                      | g         | Y              | ear ear      | 1 M               | Ton                  |           | Yea           | ar                | Yea               | ar       |
|                   | 0.54          | MMBtu  | 0.001     | ka                 | 0.001 Me               | etric Ton | 8,760          | Hr           | 1.10231           | Tons                 |           | 0.01          | Tons              | 0.01              | Tons     |
| CH₄               | H             |        | MMI       | _                  |                        | g         | -              | ′ear         |                   | Ton                  | =         | Ye            |                   | Yea               |          |
|                   |               |        |           |                    |                        |           |                |              | 1                 |                      |           |               |                   |                   |          |
|                   | 278.72        | Tons   |           | 0.0005             | Tons                   |           |                | 0.0053       | To                | ns                   |           | 278.73        | Tons              | 278.73            | Tons     |
| Mass Sum          | Ye            |        | +         |                    | ear                    | +         |                | Y            | ear               |                      | =         | Ye            |                   | Yea               |          |
|                   | CC            |        |           |                    | N <sub>2</sub> O       |           |                |              | OH₄               |                      |           |               |                   |                   |          |
|                   |               |        |           |                    | 2 -                    |           |                |              | -                 |                      |           |               |                   |                   |          |
|                   | 278.72        | TPY*1  |           | 0.0005             | TPY*298                |           |                | 0.005        | TP                | <b>/</b> *25         |           | 279.01        | Tons              | 279.01            | Tons     |
| CO <sub>2</sub> e | 278.          | .72    | +         | 0                  | .16                    | +         |                | C            | .13               |                      | =         | Ye            | ar                | Yea               | ar       |
|                   | CC            | `      |           |                    | N <sub>2</sub> O       |           |                | ,            | CH₄               |                      |           |               |                   |                   |          |

<sup>&</sup>lt;sup>1</sup> EPA AP-42 factors assume gas to have 2000 gr S/MMScf (at EPA STP). This equates to 3.44 ppmv S, assuming ideal gas. AP-42 factor can be corrected to sulfur value of facility gas by comparing actual sulfur values to EPA reference point. Assume ppmv H<sub>2</sub>S = ppmv S (true if H<sub>2</sub>S = TRS and TRS is entirely monosulfur compounds).

### LIFT-5

|                       | -          |       | DATA:     |           |                           |             |              |           |                              |                 |                 |               |                   |                   |            |
|-----------------------|------------|-------|-----------|-----------|---------------------------|-------------|--------------|-----------|------------------------------|-----------------|-----------------|---------------|-------------------|-------------------|------------|
|                       |            |       | 14-       | XX Powe   | r Oil (LIFT-              | 4)          |              |           |                              | AP-42           | Emission        | Factors       |                   |                   |            |
| ENGINE TYP            | Έ          | =     | 4SF       | RB        | N                         | G           |              |           |                              |                 | (lb/MMBtu       | 1)            |                   |                   |            |
| FUEL HEAT             | CONTENT    | =     | ,         | Btu/Scf   |                           |             | Туре         | PM        | SO <sub>2</sub> <sup>1</sup> | NO <sub>x</sub> | co              | voc           | CH <sub>2</sub> O | Other I           | HAPs       |
| FUEL H2S C            | ONTENT     | =     | 6.2       | ppmv      |                           |             | Diesel       | 3.10E-1   | [By Mass]                    | 4.41E+0         | 9.50E-1         | 3.50E-1       | 1.18E-3           | 2.691             | E-3        |
| MAXIMUM EN            | IGINE HP   | =     | 163       | • •       |                           |             | 2SLB         | 3.84E-2   | 5.88E-4                      | 3.17E+0         |                 | 1.20E-1       | 5.52E-2           | 2.531             | E-2        |
| ENGINE OP             | HOURS      | =     | 8,760     |           |                           |             | 4SLB         | 7.71E-5   | 5.88E-4                      | 4.08E+0         |                 | 1.18E-1       | 5.28E-2           | 2.10              | E-2        |
| ENGINE RAT            | ΓING       | =     | 1.30      | MMBtu/hr  |                           |             | 4SRB         | 9.50E-3   | 5.88E-4                      | 2.27E+0         | 3.72E+0         | 2.96E-2       | 2.05E-2           | 1.201             | E-2        |
| BRAKE-SPE             | CIFIC      |       | •         | Btu/      |                           |             |              | 40        |                              | 98 Subpa        |                 |               |                   | GW                | 'P         |
| FUEL CONS             |            | =     | 8,000     | HP-hr     |                           |             |              |           |                              | Emission        |                 |               |                   | N <sub>2</sub> O= | 298        |
| CALCULATI             | ON BASIS   | =     | Contr     | olled and | d Uncontr                 | olled       |              |           | Tables C                     | C-1 & C-2       |                 |               |                   | CO <sub>2</sub> = | 1          |
| EMISSION F            | ACTORS     |       |           |           | URER'S E                  |             |              |           | (kg/N                        | IMBtu)          |                 |               |                   | CH <sub>4</sub> = | 25         |
| (EF                   |            |       | Uncont    | rolled    | Contr                     | olled       |              |           | N <sub>2</sub> O             | CO <sub>2</sub> | CH <sub>4</sub> |               |                   |                   |            |
| NO                    | )x         | =     | 13.5      | g/HP-hr   | 0.5                       | g/HP-hr     |              | Diesel    | 0.0006                       | 75.04           | 0.003           |               |                   |                   |            |
| CC                    |            | =     |           | g/HP-hr   |                           | g/HP-hr     |              | NG A      | 0.0001                       | 53.06           | 0.001           |               |                   |                   |            |
| VO                    | С          |       |           | g/HP-hr   | _                         | g/HP-hr     |              | LPG       | 0.0006                       | 62.72           | 0.003           |               |                   |                   |            |
| CH <sub>2</sub>       |            | =     |           | g/HP-hr   |                           | g/HP-hr     |              | Propane   | 0.0006                       | 61.46           | 0.003           |               |                   |                   |            |
| CH                    |            | =     |           | g/HP-hr   |                           | g/HP-hr     |              | Порашо    | 0.000                        | 01.10           | 0.000           |               |                   |                   |            |
| 011                   |            |       |           |           | ntrolled 16               | <u> </u>    | l<br>ne Emis | sions Cal | culations                    |                 |                 |               |                   |                   |            |
|                       |            | 1     | Silod b   |           | 554 70                    | <b>-</b> yı |              | 541       | - 2.2.10113                  |                 |                 | Uncon         | rolled            | Contro            | المط       |
|                       | 0.0095     | l h   | 1 20      | MMBtu     | 8760 Hrs                  | 1 Ton       |              | C E       |                              |                 |                 |               | Tons              |                   | Tons       |
| PM                    |            |       | 1.30<br>H |           | Year                      | 2000 Lb     |              | S.F.      | -A                           |                 | = "             | Ye            |                   | Yea               |            |
|                       | MMI        | วเน   | п         | <u> </u>  | rear                      | 2000 LD     |              |           |                              |                 |                 | 1e            | ar                | 165               | <b>1</b> 1 |
|                       | 0.0006     | lb    | 1.30      | MMBtu     | 8760 Hrs                  | 1 Ton       |              | S.F.      | 6.16667                      | ppmy S          |                 | 0.01          | Tons              | 0.01              | Tons       |
| SO <sub>2</sub>       | MMI        |       | H         |           | Year                      | 2000 Lb     |              | 0         | 101001001000                 | ppmv S          | =               | Ye            |                   | Yea               |            |
|                       |            |       |           | •         |                           |             |              |           | 3.1.                         | pp 0            |                 |               |                   |                   |            |
| NO <sub>x</sub>       | 13.5       | g     | 163.00    | HP        | 1 Lb                      | 8,760       | Hr           | 1 Ton     | 1                            | S.F.            |                 | 21.25         | Tons              | 0.79              | Tons       |
| ΝΟχ                   | HP-        | Hr    |           |           | 453.6 g                   | Yea         | ar           | 2000 Lb   |                              | AP              | _               | Ye            | ar                | Yea               | ar         |
|                       |            |       | 4         |           |                           |             |              | 4.7       |                              |                 |                 |               | _                 |                   | _          |
| со                    | 17         |       | 163.00    | HP        | 1 Lb                      | 8,760       | 10010010     | 1 Ton     |                              | S.F.            | _               |               | Tons              |                   | Tons       |
|                       | HP-        | Hr    |           |           | 453.6 g                   | Yea         | ar           | 2000 Lb   |                              |                 |                 | Ye            | ar                | Yea               | ar         |
|                       | 0.35       | a     | 163.00    | НР        | 1 Lb                      | 8.760       | Hr           | 1 Ton     |                              | S.F.            |                 | 0.55          | Tons              | 0.55              | Tons       |
| voc                   | HP-        |       | 100.00    |           | 453.6 g                   | Yea         | 1000         | 2000 Lb   |                              | 0.1 .           | =               | Ye            |                   | Yea               |            |
|                       | - 111      |       |           |           | 100.0 9                   | ,,,         | 41           | 2000 20   |                              |                 |                 |               |                   |                   |            |
| 011.0                 | 0.0500     | g     | 163.00    | HP        | 1 Lb                      | 8,760       | Hr           | 1 Ton     |                              | S.F.            |                 | 0.08          | Tons              | 0.08              | Tons       |
| CH <sub>2</sub> O     | HP-        | Hr    |           |           | 453.6 g                   | Yea         | ar           | 2000 Lb   |                              |                 | =               | Ye            | ar                | Yea               | ar         |
|                       |            |       |           |           |                           |             |              |           |                              |                 |                 |               |                   |                   |            |
| non-CH <sub>2</sub> O | 0.0120     | lb    |           | MMBtu     |                           | 8,760       |              | 1 Ton     |                              | S.F.            | _               |               | Tons              |                   | Tons       |
| HAPs                  | MMI        | 3tu   | Н         | r         |                           | Yea         | ar           | 2000 Lb   |                              |                 |                 | Ye            | ar                | Yea               | ar         |
|                       | 1 00       | MMBtu | F0.00     | La        | 0 001 14                  | etric Ton   | 8,760        | Lle       | 4 40004                      | Tana            |                 | CC0 40        | Tono              | 668.12            | Tono       |
| CO <sub>2</sub>       | 1.30<br>Hi |       | 53.06     | -         | 10200000000<br>1020000000 |             | -            |           | 1.10231                      | Ton             | =               | 668.12<br>Yes |                   | 908.12<br>Yea     |            |
|                       | н          |       | MMI       | วเน       | J                         | g           | Y            | 'ear      | I IVI                        | TON             |                 | Te            | ar                | rea               | <b>a</b> i |
|                       | 1.30       | MMBtu | 0.0001    | ka        | 0.001 Me                  | etric Ton   | 8,760        | Hr        | 1.10231                      | Tons            |                 | 0.00          | Tons              | 0.00              | Tons       |
| N <sub>2</sub> O      | H          |       | MMI       |           | k                         |             | -            | 'ear      |                              | Ton             | =               | Ye            |                   | Yea               |            |
|                       |            |       |           |           |                           |             |              |           |                              |                 |                 |               |                   |                   |            |
| CH₄                   | 1.30       | MMBtu | 0.001     | kg        | 0.001 Me                  | etric Ton   | 8,760        | Hr        | 1.10231                      | Tons            | _               | 0.01          | Tons              | 0.01              | Tons       |
| CI 14                 | H          | ,     | MMI       | 3tu       | k,                        | g           | γ            | 'ear      | 1 M                          | Ton             | =               | Ye            | ar                | Yea               | ar         |
|                       |            |       |           |           |                           |             |              |           |                              |                 |                 |               |                   |                   |            |
|                       | 668.12     | Tons  | +         | 0.0013    |                           | <i>+</i>    |              | 0.0126    |                              | ns              |                 | 668.13        |                   | 668.13            |            |
| Mass Sum              | Yea        |       |           |           | ear                       |             |              | Y         | ear                          |                 |                 | Ye            | ar                | Yea               | ar         |
|                       | CC         | )2    |           |           | N <sub>2</sub> O          |             |              |           | CH₄                          |                 |                 |               |                   |                   |            |
|                       | 660.10     | TDV*4 |           | 0.0010    | TDV*000                   |             |              | 0.010     | TO                           | /*OF            |                 |               | T                 |                   |            |
|                       | 668.12     |       |           |           | TPY*298                   | +           |              | 0.013     |                              | /*25            | =               | 668.81        |                   | 668.81            |            |
| CO <sub>2</sub> e     | 668.       |       | +         |           | .38                       |             |              |           | .31                          |                 |                 | Yea           | ar                | Yea               | ar         |
|                       | CC         | )2    |           | - 1       | N <sub>2</sub> O          |             |              | (         | CH₄                          |                 |                 |               |                   |                   |            |

<sup>&</sup>lt;sup>1</sup> EPA AP-42 factors assume gas to have 2000 gr S/MMScf (at EPA STP). This equates to 3.44 ppmv S, assuming ideal gas. AP-42 factor can be corrected to sulfur value of facility gas by comparing actual sulfur values to EPA reference point. Assume ppmv H<sub>2</sub>S = ppmv S (true if H<sub>2</sub>S = TRS and TRS is entirely monosulfur compounds).

### GEN-5

|                   |               |       | ATA:        |               |                  |              |               |            |                              |                 |            |               |                   |                   |      |
|-------------------|---------------|-------|-------------|---------------|------------------|--------------|---------------|------------|------------------------------|-----------------|------------|---------------|-------------------|-------------------|------|
|                   |               |       | 14-)        | XX Genei      | rator (GEN       | -5)          |               |            |                              | AP-42           | Emission   | Factors       |                   |                   |      |
| ENGINE TYP        |               | =     | 4SR         |               | N                | G            |               |            |                              |                 | (lb/MMBtu  | 1)            |                   |                   |      |
| FUEL HEAT         |               | =     |             | Btu/Scf       |                  |              | Туре          | PM         | SO <sub>2</sub> <sup>1</sup> | NO <sub>x</sub> | со         | voc           | CH <sub>2</sub> O | Other I           |      |
| FUEL H2S C        |               | =     | 6.17        | ppmv          |                  |              | Diesel        | 3.10E-1    | [By Mass                     | 4.41E+0         | 9.50E-1    | 3.50E-1       | 1.18E-3           | 2.69              |      |
| MAXIMUM EN        |               | =     | 68          |               |                  |              | 2SLB          |            | 5.88E-4                      |                 |            | 1.20E-1       | 5.52E-2           | 2.53              |      |
| ENGINE OP         |               | =     | 8,760       |               |                  |              | 4SLB          |            | 5.88E-4                      |                 |            | 1.18E-1       | 5.28E-2           | 2.10              |      |
| ENGINE RAT        | -             | =     | 0.54        | MMBtu/hr      |                  |              | 4SRB          | 9.50E-3    |                              | 2.27E+0         |            | 2.96E-2       | 2.05E-2           | 1.20              |      |
| BRAKE-SPE         |               | =     |             | Btu/<br>HP-hr |                  |              |               |            |                              | 98 Subpa        |            |               |                   | GW                |      |
| FUEL CONS         |               |       |             |               |                  |              |               | Greenn     |                              | Emission        | ractors    |               |                   | N <sub>2</sub> O= | 298  |
| CALCULATI         |               | =     |             |               | d Unconti        |              |               |            |                              | C-1 & C-2       |            |               |                   | CO <sub>2</sub> = | 1    |
| EMISSION F        |               |       |             |               | URER'S E         |              |               |            |                              | MBtu)           |            |               |                   | CH₄=              | 25   |
| (EF               |               |       | Unconti     |               | Contr            | _            |               | D: 1       | N₂O                          | CO <sub>2</sub> | <u>CH₄</u> |               |                   |                   |      |
| NO                |               | =     |             | g/HP-hr       |                  | g/HP-hr      |               | Diesel     | 0.0006                       | 75.04           | 0.003      |               |                   |                   |      |
| CC                |               | =     |             | g/HP-hr       | 1                | g/HP-hr      |               | NG         | 0.0001                       | 53.06           | 0.001      |               |                   |                   |      |
| VO                |               | =     |             | g/HP-hr       |                  | g/HP-hr      |               | LPG        | 0.0006                       | 62.72           | 0.003      |               |                   |                   |      |
| CH <sub>2</sub>   |               | =     |             | g/HP-hr       |                  | g/HP-hr      |               | Propane    | 0.0006                       | 61.46           | 0.003      |               |                   |                   |      |
| СН                | 4             | =     | ontrolled a | g/HP-hr       | ntrolled 69      | g/HP-hr      | o Emis        | sions Cale | ulatione                     |                 |            |               |                   |                   |      |
|                   |               | -     | ontrolled   | ina onco      | iiti olled oc    | i ir Eigii   | ie Lilis      | Sions Care | Julations                    | 1               |            | Uncont        | ualla d           | Contro            | امطا |
|                   | 0.0005        | l h   | 0.54        | MANADA        | 8760 Hrs         | 1 Ton        |               | 0.5        |                              |                 |            |               | Tons              |                   |      |
| PM                | 0.0095<br>MMI |       | 0.54<br>Hr  |               | Year             | 2000 Lb      | 4             | S.F.       | 4                            | <b>-</b>        | = **       | Yea           |                   | Yea               | Tons |
|                   | IVIIVII       | วเน   | П           |               | rear             | 2000 LD      |               |            |                              |                 |            | 16            | aı                | 160               | a i  |
| 20                | 0.0006        | lb    | 0.54        | MMBtu         | 8760 Hrs         | 1 Ton        |               | S.F.       | 6.16667                      | ppmv S          |            | 0.00          | Tons              | 0.00              | Tons |
| SO <sub>2</sub>   | MMI           | 3tu   | Hr          |               | Year             | 2000 Lb      |               |            | Delectrostono.               | ppmv S          | =          | Yea           | ar                | Yea               | ar   |
|                   |               |       |             |               |                  |              |               |            |                              |                 |            |               |                   |                   |      |
| NO <sub>x</sub>   | 14.4          | _     | 68.00       | HP            | 1 Lb             | 8,760        | 700           | 1 Ton      | -                            | S.F.            | =          |               | Tons              |                   | Tons |
|                   | HP-           | Hr    |             |               | 453.6 g          | Yea          | ar            | 2000 Lb    |                              |                 |            | Yea           | ar                | Yea               | ar   |
|                   | 16.3          | n     | 68.00       | HP            | 1 Lb             | 8.760        | Hr            | 1 Ton      |                              | S.F.            |            | 10 70         | Tons              | 0.66              | Tons |
| co                | HP-           | -     | 00.00       |               | 453.6 g          | Yea          | ROSPOSION,    | 2000 Lb    |                              | 0.1 .           | =          | Yea           |                   | Yea               |      |
|                   |               |       |             |               | 100.0 9          |              |               | 2000 20    |                              |                 |            |               |                   |                   |      |
| voc               | 0.50          | g     | 68.00       | HP            | 1 Lb             | 8,760        | Hr            | 1 Ton      |                              | S.F.            |            | 0.33          | Tons              | 0.33              | Tons |
| 700               | HP-           | Hr    | 4           |               | 453.6 g          | Yea          | ar            | 2000 Lb    |                              |                 | _          | Yea           | ar                | Yea               | ar   |
|                   | 0.4000        |       | 00.00       | LID.          | 4 ( 5            | 8.760        | Lle           | 1 Ton      |                              | 0.5             |            | 0.07          | Tons              | 0.07              | Tons |
| CH <sub>2</sub> O | 0.1000<br>HP- |       | 68.00       | HP            | 1 Lb<br>453.6 g  | 8,760<br>Yea | Introduction" | 2000 Lb    |                              | S.F.            | =          | Yea           |                   | Yea               |      |
|                   |               | []]   |             |               | 455.0 g          | 160          | ai            | 2000 LD    |                              |                 |            | 160           | aı .              | 166               | a1   |
| non-CH₂O          | 0.0120        | lb    | 0.54        | MMBtu         |                  | 8,760        | Hr            | 1 Ton      |                              | S.F.            |            | 0.03          | Tons              | 0.03              | Tons |
| HAPs              | MMI           | 3tu   | Hr          | . 4           |                  | Yea          | ar            | 2000 Lb    |                              |                 | =          | Yea           | ar                | Yea               | ar   |
|                   |               | MME   |             |               | 000155           |              | 0             |            |                              | _               |            |               | _                 |                   | _    |
| CO <sub>2</sub>   |               | MMBtu | 53.06       |               |                  | etric Ton    | ,             |            | 1.10231                      |                 | =          | 278.72        |                   | 278.72            |      |
|                   | H             |       | MME         | 3tu           | K                | g            | Y             | 'ear       | 1 M                          | Ton             |            | Yea           | ar                | Yea               | ar   |
|                   | 0.54          | MMBtu | 0.0001      | ka            | 0.001 Me         | etric Ton    | 8,760         | Hr         | 1.10231                      | Tons            |            | 0.00          | Tons              | 0.00              | Tons |
| N₂O               | H             |       | MME         |               | k                |              |               | 'ear       |                              | Ton             | =          | Yea           |                   | Yea               |      |
|                   |               |       |             |               |                  |              |               |            |                              |                 |            |               |                   |                   |      |
| CH₄               | ****          | MMBtu | 0.001       | kg            | 0.001 Me         |              | 8,760         |            | 1.10231                      |                 | _          |               | Tons              |                   | Tons |
| V                 | H             | •     | MME         | 3tu           | k                | g            | γ             | 'ear       | 1 M                          | Ton             |            | Yea           | ar                | Yea               | ar   |
|                   | 070.70        | Tons  |             | 0.0005        | Tons             |              |               | 0.0050     |                              |                 |            | 070.70        | Tone              | 070.70            | Tons |
| Mass Sum          | 278.72<br>Ye  | Tons  | + -         | 0.0005        |                  | +            |               | 0.0053     | ear                          | ns              | =          | 278.73<br>Yea |                   | 278.73<br>Yea     |      |
| wass Suiil        | CC            |       |             |               | ear<br>N O       |              |               |            |                              |                 |            | 160           | u 1               | 100               | 41   |
|                   |               | /2    |             | l             | N₂O              |              |               |            | CH₄                          |                 |            |               |                   |                   |      |
|                   | 278.72        | TPY*1 |             | 0.0005        | TPY*298          |              |               | 0.005      | TP                           | Y*25            |            | 279.01        | Tons              | 279.01            | Tons |
| CO₂e              | 278           | 72    | +           | 0             | .16              | +            |               | C          | ).13                         |                 | =          | Yea           |                   | Yea               |      |
| _                 | CC            | )2    |             |               | N <sub>2</sub> O |              |               | (          | CH₄                          |                 |            |               |                   |                   |      |

<sup>&</sup>lt;sup>1</sup> EPA AP-42 factors assume gas to have 2000 gr S/MMScf (at EPA STP). This equates to 3.44 ppmv S, assuming ideal gas. AP-42 factor can be corrected to sulfur value of facility gas by comparing actual sulfur values to EPA reference point. Assume ppmv H<sub>2</sub>S = ppmv S (true if H<sub>2</sub>S = TRS and TRS is entirely monosulfur compounds).

### **Heater Treater at 24-1**

| Data:                 |               |                                       |            |                | Al                | P-42 EF (        | Propane)                 | Based on          | NG with E         | Stu/Conten         | t of 1020   |         |
|-----------------------|---------------|---------------------------------------|------------|----------------|-------------------|------------------|--------------------------|-------------------|-------------------|--------------------|-------------|---------|
| I <sub>2</sub> S mol% | 0.00%         | mol%                                  |            |                | PM=               | 7.6              | Lb/MMScf                 |                   | GWI               | P*                 | *Revised 11 | /29/201 |
| p Hours               | 8760          | Hrs                                   |            |                | NO <sub>X</sub> = | 150              | Lb/MMScf                 |                   | N <sub>2</sub> O= | 298                |             |         |
| eat Content           | 2,500         | Btu/scf (                             | Ind.)      |                | CO=               | 84               | Lb/MMScf                 |                   | CO <sub>2</sub> = | 1                  |             |         |
| lowrate               | 0.200         | MScf/Hr                               | (Ind.)     |                | VOC=              | 5.5              | Lb/MMScf                 |                   | CH <sub>4</sub> = | 25                 |             |         |
| eat Input             | 500,000       | Btu/hr                                |            |                | HAP=              | 1.89             | Lb/MMScf                 |                   |                   |                    |             |         |
| Jse btu/scf(EP        | A) for PM, NO | , CO, VO                              | C. Factors |                | SO <sub>2</sub> = | 0.60             | Lb/MMScf                 |                   |                   |                    |             |         |
| or EPA STP (al        | so ADEM STP)  | . SO2 fac                             | or already |                |                   | Table C-         | 1 & C-2)                 | (Ta               | able C-1 & C      | 2-2)               |             |         |
| for Industry          | STP(fromAI.   | Oil & Gas                             | Board)     |                |                   |                  | 8 Sub C GHG              |                   | Part 98 Sub       |                    |             |         |
| nd. STP:              | 60            | °F                                    | 14.65      | psia           | Emis              | ssion Fa         | ctors for C <sub>3</sub> | Emiss             | ion Factors       | for C <sub>1</sub> |             |         |
| PA STP:               | 68            | °F                                    | 14.696     | psia           | N <sub>2</sub> 0= |                  | kg/MMBtu                 | N <sub>2</sub> 0= | 0.0001            | kg/MMBtu           |             |         |
| leat Content          | 2,470         | Btu/scf (                             | EPA)       |                | CO <sub>2</sub> = | 61.46            | kg/MMBtu                 | CO <sub>2</sub> = | 53.06             | kg/MMBtu           |             |         |
| uel HHV Corr          | ection Factor | 2.421                                 |            |                | CH₄=              | 0.003            | kg/MMBtu                 | CH <sub>4</sub> = | 0.001             | kg/MMBtu           |             |         |
|                       |               |                                       |            |                | Heater            | Emissio          | n Calculation            | ns                |                   |                    |             |         |
| Pollutants            |               |                                       |            |                |                   |                  |                          |                   |                   |                    |             |         |
|                       | 7.6           | Lb                                    | 0.500      | MMBtu          | Scf (I            | EPA)             | 8,760 Hr                 | 1 Ton             | 2.421             |                    | 0.016       | Tons    |
| PM                    | MMScf (E      |                                       |            | Hr             | 2,470             | Btu              | Year                     | 2,000 Lb          |                   |                    |             | ar      |
|                       | (             | ,                                     |            |                | 2,                |                  |                          | 2,000 20          |                   |                    |             |         |
|                       | 0.60          | Lb                                    | 0.500      | MMBtu          | Scf (I            | EPA)             | 8,760 Hr                 | 1 Ton             | 2.421             |                    | 0.001       | Tons    |
| SO <sub>2</sub>       | MMScf (E      | EPA)                                  |            | Hr             | 2,470             | Btu              | Year                     | 2,000 Lb          |                   | =                  | Ye          | ar      |
|                       |               | , , , , , , , , , , , , , , , , , , , |            |                |                   |                  |                          | ,                 |                   |                    |             |         |
| NO                    | 150           | Lb                                    | 0.500      | MMBtu          | Scf (I            | EPA)             | 8,760 Hr                 | 1 Ton             | 2.421             |                    | 0.322       | Tons    |
| NO <sub>X</sub>       | MMScf (E      | EPA)                                  |            | Hr             | 2,470             | Btu              | Year                     | 2,000 Lb          |                   |                    | Ye          | ar      |
|                       |               |                                       |            |                |                   |                  | 1                        |                   |                   |                    |             |         |
| 00                    | 84            | Lb                                    | 0.500      | MMBtu          | Scf (I            | EPA)             | 8,760 Hr                 | 1 Ton             | 2.421             |                    | 0.180       | Tons    |
| СО                    | MMScf (E      | EPA)                                  |            | Hr             | 2,470             | Btu              | Year                     | 2,000 Lb          |                   | =                  | Ye          | ar      |
|                       |               |                                       |            |                |                   |                  |                          |                   |                   |                    |             |         |
| voc                   | 5.5           | Lb                                    | 0.500      | MMBtu          | Scf (I            | EPA)             | 8,760 Hr                 | 1 Ton             | 2.421             | =                  | 0.012       | Tons    |
| VOC                   | MMScf (E      | EPA)                                  |            | Hr             | 2,470             | Btu              | Year                     | 2,000 Lb          |                   |                    | Ye          | ar      |
|                       |               |                                       |            |                |                   |                  |                          |                   |                   |                    |             |         |
| HAP                   | 1.89          | Lb                                    | 0.500      | MMBtu          | Scf (I            | EPA)             | 8,760 Hr                 | 1 Ton             | 2.421             |                    | 0.004       | Tons    |
| IIA                   | MMScf (E      | EPA)                                  |            | Hr             | 2,470             | Btu              | Year                     | 2,000 Lb          |                   | _                  | Ye          | ar      |
|                       |               |                                       |            |                |                   |                  |                          |                   |                   |                    |             |         |
| CO <sub>2</sub>       | 0.5           | MMBtu                                 | 61.46      | kg             | 0.001 Me          | etric Ton        | 8,760 Hr                 | 1.1023            | 3 Tons            |                    | 296.73      |         |
| <b>30</b> 2           | Hr            |                                       | M          | MBtu           | k                 | g                | Year                     | 1 Metr            | ic Ton            |                    | Ye          | ar      |
|                       |               |                                       |            |                |                   |                  |                          |                   |                   |                    |             |         |
| N₂O                   | 0.5           | MMBtu                                 | 0.0006     | kg             | 0.001 Me          | etric Ton        | 8,760 Hr                 | 1.1023            | 3 Tons            |                    | 0.00290     |         |
| 1.20                  | Hr            |                                       | M          | MBtu           | k                 | g                | Year                     | 1 Metr            | ic Ton            |                    | Ye          | ar      |
|                       |               |                                       |            |                |                   |                  |                          |                   |                   |                    |             |         |
| CH₄                   | - Ville       | MMBtu                                 | 0.003      | Ventorio (n. 1 | 0.001 Me          |                  | -,                       | 1.1023            |                   |                    | 0.01448     |         |
|                       | Hr            |                                       | M          | MBtu           | k                 | g                | Year                     | 1 Metr            | ic Ton            |                    | Ye          | ar      |
|                       |               | 000 70                                | -          |                | 0.000             | ) T              |                          | 0.04.45           | -                 |                    |             | _       |
|                       |               | 296.73                                | Ions       | +              |                   | 9 Tons           | +                        | 0.0145            |                   | =                  | 296.75      |         |
| Mass Sum              |               | Year                                  |            |                | Ye                |                  |                          | Ye                | ar                |                    | Ye          | ar      |
|                       |               | CO <sub>2</sub>                       |            |                | N                 | I <sub>2</sub> O |                          | CH <sub>4</sub>   |                   |                    |             |         |
|                       |               |                                       |            |                |                   | 0 75):           | V 225                    |                   |                   | V                  |             |         |
|                       | 296.73        |                                       | X 1        |                | 0.002             | 9 TPY            | X 298                    | 0.0145            |                   | X 25 =             | 297.96      |         |
| CO₂e                  | 2             | 296.73                                |            | +              |                   | 0.86             | +                        |                   | 0.36              |                    | Ye          | ar      |
|                       |               | CO <sub>2</sub>                       |            |                |                   | N <sub>2</sub> O |                          |                   | CH <sub>4</sub>   |                    |             |         |

<sup>&</sup>lt;sup>1</sup> AP-42 emission factors taken from Chapter 1.4. Based on natural gas with 1020 btu/scf, and corrected in calculations. From Chapter 1.5, propane emission factors are equivalent on a heat basis to methane factors, except the NO<sub>X</sub> factor is 1.5x higher.

## Line Heater at 24-1

| Data:                          |                |                 |             |       | AF                | -42 EF         | (Propago)                | ٦.          | Dacad ar          | NC with D         | tu/Conton  | t of 1020   |         |
|--------------------------------|----------------|-----------------|-------------|-------|-------------------|----------------|--------------------------|-------------|-------------------|-------------------|------------|-------------|---------|
| Jata:<br>H <sub>2</sub> S mol% | 0.000/         | m alo/          |             |       | PM=               |                | (Propane)                |             | based on          |                   | Stu/Conten |             |         |
|                                | 0.00%          | mol%            |             |       |                   | 7.6            | Lb/MMScf                 |             |                   | GWI               |            | *Revised 11 | /29/201 |
| p Hours                        | 8760           | Hrs             | II \        |       | NO <sub>X</sub> = | 150            | Lb/MMScf                 |             |                   | N <sub>2</sub> O= | 298        |             |         |
| eat Content                    | 2,500          | Btu/scf (       | ,           |       | CO=               | 84             | Lb/MMScf                 |             |                   | CO <sub>2</sub> = | 1          |             |         |
| lowrate                        | 0.300          | MScf/Hr         | (Ind.)      |       | VOC=              | 5.5            | Lb/MMScf                 |             |                   | CH <sub>4</sub> = | 25         |             |         |
| eat Input                      | 750,000        | Btu/hr          |             |       | HAP=              | 1.89           | Lb/MMScf                 |             |                   |                   |            |             |         |
| Jse btu/scf(EP                 | A) for PM, NOx | , CO, VO        | C. Factors  |       | SO <sub>2</sub> = | 0.60           | Lb/MMScf                 |             |                   |                   |            |             |         |
|                                | so ADEM STP).  |                 |             |       |                   | Table C        | -1 & C-2)                |             | (Ta               | ble C-1 & C       | C-2)       |             |         |
|                                | STP (from Al.  |                 |             |       | 40 CF             | R Part 9       | 8 Sub C GHG              | i           | 40 CFR            | Part 98 Sub       | C GHG      |             |         |
| nd. STP:                       | 60             |                 | 14.65       | •     |                   |                | ctors for C <sub>3</sub> |             |                   | on Factors        |            |             |         |
| PASTP:                         | 68             |                 | 14.696      | psia  | N <sub>2</sub> 0= |                | kg/MMBtu                 | 1           | N <sub>2</sub> 0= |                   | kg/MMBtu   |             |         |
| eat Content                    | 2,470          | Btu/scf (       | EPA)        |       | CO <sub>2</sub> = |                | kg/MMBtu                 | (           | CO <sub>2</sub> = |                   | kg/MMBtu   |             |         |
| uel HHV Corre                  | ection Factor  | 2.421           |             |       | CH <sub>4</sub> = |                | kg/MMBtu                 | - 4         | CH <sub>4</sub> = | 0.001             | kg/MMBtu   |             |         |
|                                |                |                 |             |       | Heater            | Emissio        | on Calculat              | tions       |                   |                   |            |             |         |
| Pollutants                     |                |                 |             |       |                   |                |                          |             |                   |                   |            |             |         |
|                                | 7.6            | Lb              | 0.750       | MMBtu | Scf (E            | EPA)           | 8,760 H                  | lr          | 1 Ton             | 2.421             |            | 0.024       | Tons    |
| PM -                           | MMScf (E       | PA)             |             | Hr    | 2,470             | Btu            | Year                     | 107         | 2.000 Lb          |                   |            |             | ar      |
|                                |                | ,               |             |       | _,,,,,            |                |                          | $\dashv$    | _,000 LD          |                   |            |             |         |
|                                | 0.60           | Lb              | 0.750       | MMBtu | Scf (E            | EPA)           | 8,760 H                  | lr          | 1 Ton             | 2.421             |            | 0.002       | Tons    |
| SO <sub>2</sub>                | MMScf (E       | PA)             |             | Hr    | 2,470             | Btu            | Year                     |             | 2,000 Lb          |                   | =          | Ye          | ar      |
|                                |                | ,               |             |       | 1 =,              |                |                          |             | 2,000 20          |                   |            |             |         |
|                                | 150            | Lb              | 0.750       | MMBtu | Scf (E            | EPA)           | 8,760 H                  | lr .        | 1 Ton             | 2.421             |            | 0.483       | Tons    |
| NO <sub>X</sub>                | MMScf (E       |                 |             | Hr    | 2,470             | Btu            | Year                     | - 3         | 2.000 Lb          |                   | =          |             | ar      |
|                                |                | ,               |             | • • • | 2,470             |                | 100.                     |             | 2,000 LD          |                   |            |             | -       |
|                                | 84             | Lb              | 0.750       | MMBtu | Scf (E            | EPA)           | 8,760 H                  | ır I        | 1 Ton             | 2.421             |            | 0.271       | Tons    |
| co                             | MMScf (E       |                 |             | Hr    | 2,470             | Btu            | Year                     | A01001001 0 | 2,000 Lb          |                   |            |             | ar      |
|                                |                | ,               |             | •••   | 2,370             | 71             | 100.                     |             | 2,000 Lb          |                   |            |             |         |
|                                | 5.5            | Lb              | 0.750       | MMBtu | Scf (E            | EPA)           | 8,760 H                  | lr          | 1 Ton             | 2.421             |            | 0.018       | Tons    |
| voc                            | MMScf (E       |                 |             | Hr    | 2,470             | Btu            | Year                     |             | 2,000 Lb          |                   |            |             | ar      |
|                                |                | ,               |             |       | 2,170             | -              | 100                      |             | 2,000 20          |                   |            |             | -       |
|                                | 1.89           | Lb              | 0.750       | MMBtu | Scf (E            | EPA)           | 8,760 H                  | lr          | 1 Ton             | 2.421             |            | 0.006       | Tons    |
| HAP                            | MMScf (E       | PA)             |             | Hr    | 2,470             | Btu            | Year                     |             | 2.000 Lb          |                   |            |             | ar      |
|                                |                | ,               |             |       | 2,170             | 11             | 14.11                    |             | 2,000 20          |                   |            |             |         |
|                                | 0.75           | MMBtu           | 61.46       | kg    | 0.001 Me          | tric Ton       | 8,760 H                  | lr          | 1.1023            | Tons              |            | 445.10      | Tons    |
| CO <sub>2</sub>                | Hr             |                 | - 1         | MBtu  | kç                | 1              | Year                     |             | 1 Metri           | c Ton             |            |             | ar      |
|                                |                |                 |             |       |                   |                | -                        |             |                   |                   |            |             |         |
|                                | 0.75           | MMBtu           | 0.0006      | kg    | 0.001 Me          | tric Ton       | 8,760 H                  | lr          | 1.1023            | Tons              |            | 0.00435     | Tons    |
| N <sub>2</sub> O               | Hr             |                 | 70010101010 | MBtu  | kç                | י              | Year                     |             | 1 Metri           | c Ton             |            |             | ar      |
|                                |                |                 |             |       |                   | ,              |                          |             |                   |                   |            |             |         |
|                                | 0.75           | MMBtu           | 0.003       | kg    | 0.001 Me          | tric Ton       | 8,760 H                  | lr          | 1.1023            | Tons              |            | 0.02173     | Tons    |
| CH₄ -                          | Hr             |                 | М           | MBtu  | kç                | 1              | Year                     |             | 1 Metri           | c Ton             |            |             | ar      |
|                                |                |                 |             |       | 1                 | ,              |                          |             |                   |                   |            |             |         |
|                                |                | 445.10          | Tons        | +     | 0.0043            | 3 Tons         | +                        |             | 0.0217            | Tons              |            | 445.13      | Tons    |
| Mass Sum                       |                | Year            |             |       | Ye                | ar             |                          |             | Yea               | ar                |            | Ye          | ar      |
|                                |                |                 |             |       |                   | <sub>2</sub> O |                          |             | CH <sub>4</sub>   |                   |            |             |         |
|                                |                | CO <sub>2</sub> |             |       | IN IN             | 20             |                          |             | СП4               |                   |            |             |         |
|                                | 445.10         | TPY             | X 1         |       | 0.004             | 3 TPY          | X 298                    | -           | 0.0217            | TPY               | X 25       | 446.94      | Tons    |
| CO₂e                           |                | 45.10           |             |       | 0.001             | 1.29           |                          |             | 0.0217            | 0.54              | =          |             | ar      |
| OU OC                          | 4              | .0.10           |             | +     |                   | 1.23           |                          | +           |                   | J.J-F             |            | 16          |         |

<sup>&</sup>lt;sup>1</sup> AP-42 emission factors taken from Chapter 1.4. Based on natural gas with 1020 btu/scf, and corrected in calculations. From Chapter 1.5, propane emission factors are equivalent on a heat basis to methane factors, except the NO<sub>X</sub> factor is 1.5x higher.

### **Heater Treater at 13-11**

| Data:                |                                       |                 |            |                                         |                   | AP-42 I          | EF (NG)                    | Based on          | NG with 8         | Stu/Conten | t of 1020                               |           |
|----------------------|---------------------------------------|-----------------|------------|-----------------------------------------|-------------------|------------------|----------------------------|-------------------|-------------------|------------|-----------------------------------------|-----------|
| l₂S mol%             | 0.00%                                 | mol%            |            |                                         | PM=               | 7.6              | Lb/MMScf                   |                   | GW                |            | *Revised 13                             | 1/29/2013 |
| p Hours              | 8760                                  | Hrs             |            |                                         | NO <sub>X</sub> = | 100              | Lb/MMScf                   |                   | N <sub>2</sub> O= | 298        |                                         |           |
| eat Content          | 1,462                                 | Btu/scf (I      | lnd.)      |                                         | CO=               | 84               | Lb/MMScf                   |                   | CO <sub>2</sub> = | 1          |                                         |           |
| owrate               | 0.342                                 | MScf/Hr         | (Ind.)     |                                         | VOC=              | 5.5              | Lb/MMScf                   |                   | CH <sub>4</sub> = | 25         |                                         |           |
| eat Input            | 500,000                               | Btu/hr          |            |                                         | HAP=              | 1.89             | Lb/MMScf                   |                   |                   |            |                                         |           |
| lse btu/scf(EP       | A) for PM, NOx                        | , CO, VO        | C. Factors |                                         | SO <sub>2</sub> = | 0.60             | Lb/MMScf                   |                   |                   |            |                                         |           |
|                      | so ADEM STP)                          |                 |            |                                         | (                 | Table C-         | 1 & C-2)                   | (Т                | able C-1 & 0      | C-2)       |                                         |           |
| -                    | STP (from Al.                         |                 |            |                                         |                   |                  | 8 Sub C GHG                |                   | Part 98 Sul       |            |                                         |           |
| nd. STP:<br>:PA STP: | 60<br>68                              |                 | 14.65      | •                                       |                   |                  | ctors for C <sub>3</sub>   |                   | ion Factors       |            |                                         |           |
| eat Content          |                                       | Btu/scf (I      | 14.696     | psia                                    | N <sub>2</sub> 0= |                  | kg/MMBtu                   | N <sub>2</sub> 0= |                   | kg/MMBtu   |                                         |           |
|                      | · · · · · · · · · · · · · · · · · · · |                 | EPA)       |                                         | CO <sub>2</sub> = |                  | kg/MMBtu                   | CO <sub>2</sub> = | 0.001             | kg/MMBtu   |                                         |           |
| uel HHV Corre        | ection Factor                         | 1.416           |            |                                         | CH <sub>4</sub> = |                  | kg/MMBtu<br>on Calculation | CH <sub>4</sub> = | 0.001             | kg/MMBtu   |                                         |           |
| Pollutants           |                                       |                 |            |                                         | ricater           | Lillissic        | ni Calculati               | JIIS              |                   |            |                                         |           |
| Poliularits          |                                       |                 |            |                                         | 1 0 11            |                  |                            |                   |                   |            |                                         |           |
| PM                   | 7.6                                   |                 |            | MMBtu                                   | Scf (             |                  | 8,760 Hr                   |                   | 1.416             | =          | 0.016                                   |           |
|                      | MMScf (E                              | PA)             |            | Hr                                      | 1,444             | Btu              | Year                       | 2,000 Lb          |                   |            | Ye                                      | ear       |
|                      | 0.60                                  | l h             | 0.500      | MMBtu                                   | Scf (             | EPA)             | 8,760 Hr                   | 1 Ton             | 1.416             |            | 0.001                                   | Tons      |
| SO <sub>2</sub>      | MMScf (E                              |                 |            | Hr                                      | 1,444             | Btu              | Year                       | 2,000 Lb          | 1.410             | =          |                                         | ear       |
|                      | IVIIVIOCI (E                          | -1 7 9          |            | • • • • • • • • • • • • • • • • • • • • | 1,,,,,,           | Dia              | Tour                       | 2,000 Lb          |                   |            | • • • • • • • • • • • • • • • • • • • • | ,u.       |
|                      | 100                                   | Lb              | 0.500      | MMBtu                                   | Scf (             | EPA)             | 8,760 Hr                   | 1 Ton             | 1.416             |            | 0.215                                   | Tons      |
| NO <sub>X</sub>      | MMScf (E                              | PA)             |            | Hr                                      | 1,444             | Btu              | Year                       | 2,000 Lb          |                   | =          | Ye                                      | ear       |
|                      |                                       |                 |            |                                         |                   |                  |                            |                   |                   |            |                                         |           |
| со                   | 84                                    | Lb              | 0.500      | MMBtu                                   | Scf (             | EPA)             | 8,760 Hr                   | 1 Ton             | 1.416             |            | 0.180                                   |           |
| 00                   | MMScf (E                              | PA)             |            | Hr                                      | 1,444             | Btu              | Year                       | 2,000 Lb          |                   | _          | Ye                                      | ar        |
|                      |                                       |                 |            |                                         |                   |                  |                            |                   |                   |            |                                         |           |
| voc                  | 5.5                                   |                 |            | MMBtu                                   | Scf (             |                  | 8,760 Hr                   | 400000            | 1.416             | =          | 0.012                                   |           |
|                      | MMScf (E                              | PA)             |            | Hr                                      | 1,444             | Btu              | Year                       | 2,000 Lb          |                   |            | Ye                                      | ear       |
|                      | 1.89                                  | lh 4            | 0.500      | MMBtu                                   | Scf (             | EΡΔ              | 8,760 Hr                   | 1 Ton             | 1.416             |            | 0.004                                   | Tono      |
| HAP                  | MMScf (E                              | - 10            |            | Hr                                      | 1,444             | Btu              | Year                       | 2,000 Lb          | 1.410             | - =        |                                         | ear       |
|                      | IVIIVIOCI (L                          | -1 //)          |            |                                         | 1,444             | Did              | IGai                       | 2,000 Lb          |                   |            |                                         | ,uı       |
|                      | 0.5                                   | MMBtu           | 53.06      | kg                                      | 0.001 Me          | etric Ton        | 8,760 Hr                   | 1.102             | 3 Tons            |            | 256.18                                  | Tons      |
| CO <sub>2</sub>      | Hr                                    |                 | M          | MBtu                                    | k                 | g                | Year                       | 1 Metr            | ic Ton            | - =        |                                         | ear       |
|                      |                                       |                 |            |                                         |                   |                  |                            |                   |                   |            |                                         |           |
| N₂O                  | 0.5                                   | MMBtu           | 0.0001     | kg                                      | 0.001 Me          | etric Ton        | 8,760 Hr                   | 1.102             | 3 Tons            |            | 0.00048                                 | Tons      |
| 1420                 | Hr                                    |                 | M          | MBtu                                    | k                 | g                | Year                       | 1 Metr            | ic Ton            | _          | Ye                                      | ear       |
|                      |                                       |                 |            |                                         |                   |                  |                            |                   |                   |            |                                         |           |
| CH₄                  | 0.5                                   | MMBtu           | 0.001      | Vocation and Co.                        | 0.001 Me          | etric Ton        | 8,760 Hr                   |                   | 3 Tons            |            | 0.00483                                 |           |
|                      | Hr                                    |                 | M          | MBtu                                    | k                 | g                | Year                       | 1 Metr            | ic Ton            |            | Ye                                      | ear       |
|                      |                                       | 256.18          | <b>—</b>   |                                         | 0.000             | 5 Tons           |                            | 0.0040            | т                 |            | 05040                                   | <b>T</b>  |
| Mana Cum             |                                       | 450             | TORS       | +                                       |                   |                  | +                          | 0.0048            |                   |            | 256.18<br>V                             | ear       |
| Mass Sum             |                                       | Year            |            |                                         | _                 | ar               |                            |                   | ar                |            | 16                                      | al        |
|                      |                                       | CO <sub>2</sub> |            |                                         | ı                 | I₂O              |                            | CH₄               |                   |            |                                         |           |
|                      | 256.18                                | TPY             | X 1        |                                         | 0.000             | 5 TPY            | X 298                      | 0.0048            | TPY               | X 25       | 256.44                                  | Tone      |
| CO₂e                 |                                       | 256.18          | ^ '        | 1                                       | 0.000             | 0.14             |                            |                   | 0.12              | =          |                                         | ear       |
| 00 <sub>2</sub> e    |                                       | CO <sub>2</sub> |            | +                                       |                   | N <sub>2</sub> O | 1                          | <b>-</b>          | CH <sub>4</sub>   |            | 10                                      |           |

<sup>&</sup>lt;sup>1</sup> AP-42 emission factors taken from Chapter 1.4. Based on natural gas with 1020 btu/scf, and corrected in calculations. From Chapter 1.5, propane emission factors are equivalent on a heat basis to methane factors, except the NO<sub>X</sub> factor is 1.5x higher.

### **Heater Treater 13-15**

| Data:           |                 |                 |           |            |                   | AP-42            | EF (NG)                  | Based on          | NG with E         | Stu/Conten | t of 1020   |          |
|-----------------|-----------------|-----------------|-----------|------------|-------------------|------------------|--------------------------|-------------------|-------------------|------------|-------------|----------|
| H₂S mol%        | 0.00%           | mol%            |           |            | PM=               | 7.6              | Lb/MMScf                 |                   | GW                |            | *Revised 11 | /29/201  |
| p Hours         | 8760 I          | Hrs             |           |            | NO <sub>X</sub> = | 100              | Lb/MMScf                 |                   | N <sub>2</sub> O= | 298        |             |          |
| leat Content    | 1,359 I         | Btu/scf (       | Ind.)     |            | CO=               | 84               | Lb/MMScf                 |                   | CO <sub>2</sub> = | 1          |             |          |
| lowrate         | 0.368           | MScf/Hr         | (Ind.)    |            | VOC=              | 5.5              | Lb/MMScf                 |                   | CH <sub>4</sub> = | 25         |             |          |
| leat Input      | 500,000         | Btu/hr          |           |            | HAP=              | 1.89             | Lb/MMScf                 |                   |                   |            |             |          |
| lse btu/scf.(FP | A) for PM, NOx, | CO VO           | C Factors |            | SO <sub>2</sub> = | 0.60             | Lb/MMScf                 |                   |                   |            |             |          |
| ,               | so ADEM STP).   |                 |           |            | -                 | Table C          | -1 & C-2)                | (T:               | able C-1 & 0      | 2-2)       |             |          |
| for Industry    | STP (from Al. C | Oil & Gas       | Board)    |            | ,                 |                  | 8 Sub C GHG              |                   | Part 98 Sul       |            |             |          |
| nd. STP:        | 60 '            | °F              | 14.65     | psia       |                   |                  | ctors for C <sub>3</sub> |                   | ion Factors       |            |             |          |
| PASTP:          | 68 °            | °F              | 14.696    | psia       | N <sub>2</sub> 0= | 0.0006           | kg/MMBtu                 | N <sub>2</sub> 0= | 0.0001            | kg/MMBtu   |             |          |
| leat Content    | 1,342           | Btu/scf (       | EPA)      |            | CO <sub>2</sub> = | 61.46            | kg/MMBtu                 | CO <sub>2</sub> = | 53.06             | kg/MMBtu   |             |          |
| uel HHV Corr    | ection Factor   | 1.316           |           |            | CH <sub>4</sub> = | 0.003            | kg/MMBtu                 | CH <sub>4</sub> = | 0.001             | kg/MMBtu   |             |          |
|                 |                 |                 |           |            | Heater            | Emissio          | on Calculati             | ons               |                   |            |             |          |
| Pollutants      |                 |                 |           |            |                   |                  |                          |                   |                   |            |             |          |
|                 | 7.6 [           | Lb              | 0.500     | MMBtu      | Scf (F            | EPA)             | 8,760 Hr                 | 1 Ton             | 1.316             |            | 0.016       | Tons     |
| PM              | MMScf (EI       |                 |           | Hr         | 1,342             | Btu              | Year                     | 2.000 Lb          |                   | - =        |             | ar       |
|                 |                 | . , ,           |           |            | 1,042             |                  | , Joan                   | 2,000 ED          |                   |            |             |          |
|                 | 0.60            | Lb              | 0.500     | MMBtu      | Scf (E            | EPA)             | 8,760 Hr                 | 1 Ton             | 1.316             |            | 0.001       | Tons     |
| SO <sub>2</sub> | MMScf (EI       |                 |           | Hr         | 1,342             | Btu              | Year                     | 2,000 Lb          |                   | =          |             | ar       |
|                 |                 | ,               |           |            | 1,012             | - 10             | 100.                     | 2,000 25          |                   |            |             | -        |
|                 | 100 l           | Lb              | 0.500     | MMBtu      | Scf (E            | EPA)             | 8,760 Hr                 | 1 Ton             | 1.316             |            | 0.215       | Tons     |
| NO <sub>X</sub> | MMScf (EI       | PA)             |           | Hr         | 1,342             | Btu              | Year                     | 2,000 Lb          |                   |            |             | ar       |
|                 |                 | ,               |           |            |                   |                  |                          | 2,000 20          |                   |            |             |          |
|                 | 84 I            | Lb              | 0.500     | MMBtu      | Scf (E            | EPA)             | 8,760 Hr                 | 1 Ton             | 1.316             |            | 0.180       | Tons     |
| СО              | MMScf (EI       | PA)             |           | Hr         | 1,342             | Btu              | Year                     | 2.000 Lb          |                   | =          | Ye          | ar       |
|                 | ,               |                 |           |            |                   |                  |                          |                   |                   |            |             |          |
| V00             | 5.5 I           | Lb              | 0.500     | MMBtu      | Scf (F            | EPA)             | 8,760 Hr                 | 1 Ton             | 1.316             |            | 0.012       | Tons     |
| voc             | MMScf (El       | PA)             |           | Hr         | 1,342             | Btu              | Year                     | 2,000 Lb          |                   | =          | Ye          | ar       |
|                 |                 |                 | A         |            |                   | #                |                          |                   |                   |            |             |          |
| HAP             | 1.89 I          | Lb              | 0.500     | MMBtu      | Scf (E            | EPA)             | 8,760 Hr                 | 1 Ton             | 1.316             |            | 0.004       | Tons     |
| ПАР             | MMScf (El       | PA)             |           | Hr         | 1,342             | Btu              | Year                     | 2,000 Lb          |                   |            | Ye          | ar       |
|                 |                 |                 |           |            |                   |                  |                          |                   |                   |            |             |          |
| CO <sub>2</sub> | 0.5             | MMBtu           | 53.06     | kg         | 0.001 Me          | tric Ton         | 8,760 Hr                 | 1.1023            | 3 Tons            |            | 256.18      | Tons     |
| 002             | Hr              |                 | М         | MBtu       | k                 | 3                | Year                     | 1 Metr            | ic Ton            | _          | Ye          | ar       |
|                 |                 |                 |           |            |                   |                  |                          |                   | _                 |            |             |          |
| N₂O             | 0.5             | MMBtu           | 0.0001    | kg         | 0.001 Me          | tric Ton         | 8,760 Hr                 | 1.1023            | 3 Tons            |            | 0.00048     |          |
| 2 -             | Hr              |                 | М         | MBtu       | k                 | 9                | Year                     | 1 Metr            | ic Ton            |            | Ye          | ar       |
|                 |                 |                 |           |            |                   |                  |                          |                   |                   |            |             | _        |
| CH₄             | - VIII          | MMBtu           | 0.001     | - American | 0.001 Me          | 100,             |                          |                   |                   |            | 0.00483     |          |
|                 | Hr              |                 | М         | MBtu       | k                 | 9                | Year                     | 1 Metr            | ic Ton            |            | Ye          | ar       |
|                 |                 | 0EC 10          | <b>T</b>  |            | 0.000             | 5 Tons           |                          | 0.0040            | T                 |            | 05040       | <b>T</b> |
|                 |                 | 256.18          | ions      | +          |                   |                  | +                        | 0.0048            |                   | =          | 256.18      |          |
| Mass Sum        |                 | Year            |           |            | Ye                |                  |                          |                   | ar                |            | YE          | ar       |
|                 |                 | CO <sub>2</sub> |           |            | N                 | l₂O              |                          | CH₄               |                   |            |             |          |
|                 | 050.46          | TDV             | V 4       |            | 0.000             | E TOY            | V 000                    | 0.0075            | TDV               | V 05       |             | _        |
|                 | 256.18          |                 | X 1       |            | 0.000             |                  | X 298                    | 0.0048            |                   | X 25 =     | 256.44      |          |
| CO₂e            | 25              | 56.18           |           | +          |                   | 0.14             | -                        | +                 | 0.12              |            | Ye          | ar       |
|                 |                 | CO <sub>2</sub> |           |            |                   | N <sub>2</sub> O |                          |                   | CH <sub>4</sub>   |            |             |          |

<sup>&</sup>lt;sup>1</sup> AP-42 emission factors taken from Chapter 1.4. Based on natural gas with 1020 btu/scf, and corrected in calculations. From Chapter 1.5, propane emission factors are equivalent on a heat basis to methane factors, except the NO<sub>X</sub> factor is 1.5x higher.

### **Heater Treater 18-13**

| ata:                |               |                 |            |        |                   | AP-42            | EF (NG)                 |        | Based on          |                   | Stu/Conten | t of 1020   |          |
|---------------------|---------------|-----------------|------------|--------|-------------------|------------------|-------------------------|--------|-------------------|-------------------|------------|-------------|----------|
| <sub>2</sub> S mol% | 0.00%         | mol%            |            |        | PM=               | 7.6              | Lb/MMScf                |        |                   | GWI               | P*         | *Revised 11 | /29/2013 |
| o Hours             | 8760          | Hrs             |            |        | NO <sub>X</sub> = | 100              | Lb/MMScf                |        |                   | N <sub>2</sub> O= | 298        |             |          |
| eat Content         | 1,462         | Btu/scf (       | Ind.)      |        | CO=               | 84               | Lb/MMScf                |        |                   | CO <sub>2</sub> = | 1          |             |          |
| owrate              | 0.342         | MScf/Hr         | (Ind.)     |        | VOC=              | 5.5              | Lb/MMScf                |        |                   | CH <sub>4</sub> = | 25         |             |          |
| eat Input           | 500,000       | Btu/hr          |            |        | HAP=              | 1.89             | Lb/MMScf                |        |                   |                   |            |             |          |
| se btu/scf(EP       | A) for PM, NO | , CO, VO        | C. Factors |        | SO <sub>2</sub> = | 0.60             | Lb/MMScf                |        |                   |                   |            |             |          |
|                     | so ADEM STP)  |                 |            |        | (                 | Table C-         | ·1 & C-2)               |        | (Ta               | ble C-1 & C       | C-2)       |             |          |
|                     | STP (from Al. |                 |            |        | ,                 |                  | 8 Sub C <sup>'</sup> GH | G      |                   | Part 98 Sub       |            |             |          |
| d. STP:             | 60            |                 | 14.65      | •      |                   |                  | ctors for C             | 3      |                   | ion Factors       |            |             |          |
| PA STP:             | 68            |                 | 14.696     | psia   | N <sub>2</sub> 0= |                  | kg/MMBtu                |        | N <sub>2</sub> 0= |                   | kg/MMBtu   |             |          |
| eat Content         | 1,444         | Btu/scf (       | EPA)       |        | CO <sub>2</sub> = |                  | kg/MMBtu                |        | CO <sub>2</sub> = |                   | kg/MMBtu   |             |          |
| el HHV Corre        | ection Factor | 1.416           |            |        | CH <sub>4</sub> = |                  | kg/MMBtu                |        | CH <sub>4</sub> = | 0.001             | kg/MMBtu   |             |          |
|                     |               |                 |            |        | Heater            | Emissio          | on Calcula              | ition  | S                 |                   |            |             |          |
| Pollutants          |               |                 |            |        |                   |                  |                         |        |                   |                   |            |             |          |
| DM                  | 7.6           | Lb              | 0.500      | MMBtu  | Scf (E            | EPA)             | 8,760                   | Hr     | 1 Ton             | 1.416             |            | 0.016       | Tons     |
| PM                  | MMScf (E      | PA)             |            | Hr     | 1,444             | Btu              | Year                    |        | 2,000 Lb          |                   | =          | Ye          | ar       |
|                     |               |                 |            |        |                   |                  |                         |        |                   |                   |            |             |          |
| SO <sub>2</sub>     | 0.60          | Lb              | 0.500      | MMBtu  | Scf (E            | EPA)             | 8,760                   | Hr     | 1 Ton             | 1.416             |            | 0.001       | Tons     |
| 302                 | MMScf (E      | PA)             |            | Hr     | 1,444             | Btu              | Year                    |        | 2,000 Lb          |                   | _          | Ye          | ar       |
|                     |               |                 |            |        |                   |                  |                         |        |                   |                   |            |             |          |
| NO <sub>x</sub>     | 100           | Lb              | 0.500      | MMBtu  | Scf (E            | EPA)             | 8,760                   | Hr     | 1 Ton             | 1.416             | _          | 0.215       | Tons     |
| .τοχ                | MMScf (E      | EPA)            |            | Hr     | 1,444             | Btu              | Year                    |        | 2,000 Lb          |                   | # _        | Ye          | ar       |
|                     |               |                 |            |        |                   |                  |                         |        |                   |                   |            |             |          |
| СО                  |               | Lb              | 0.500      | MMBtu  | Scf (E            |                  | 8,760                   | ,6[5]5 | 1 Ton             | 1.416             |            | 0.180       |          |
|                     | MMScf (E      | PA)             |            | Hr     | 1,444             | Btu              | Year                    | -      | 2,000 Lb          |                   |            | Ye          | ar       |
|                     |               | 1 6             | 0.500      | NANADa | Scf (E            | EDA)             | 0.700                   | 11     | 17.               | 1 110             |            | 0.040       | <b>-</b> |
| voc                 | 5.5           |                 |            | MMBtu  |                   |                  | 8,760                   | lane.  | 1 Ton             | 1.416             | =          | 0.012       |          |
|                     | MMScf (E      | :PA)            | _4         | Hr     | 1,444             | Btu              | Year                    |        | 2,000 Lb          | <b>P</b>          |            | Ye          | ar       |
|                     | 1.89          | l b             | 0.500      | MMBtu  | Scf (F            | EPA)             | 8,760                   | Hr     | 1 Ton             | 1.416             |            | 0.004       | Tons     |
| HAP                 | MMScf (E      |                 |            | Hr     | 1,444             | Btu              | Year                    |        | 2.000 Lb          |                   | =          |             | ar       |
|                     |               |                 |            |        | 1,777             |                  | 100                     |        | 2,000 Lb          |                   |            |             |          |
|                     | 0.5           | MMBtu           | 53.06      | kg     | 0.001 Me          | tric Ton         | 8,760                   | Hr     | 1.1023            | Tons              |            | 256.18      | Tons     |
| CO <sub>2</sub>     | Hr            |                 | M          | MBtu   | k                 |                  | Year                    |        | 1 Metri           | c Ton             | =          | Ye          | ar       |
|                     |               |                 |            |        |                   |                  |                         |        |                   |                   |            |             |          |
| N <sub>2</sub> O    | 0.5           | MMBtu           | 0.0001     | kg     | 0.001 Me          | tric Ton         | 8,760                   | Hr     | 1.1023            | Tons              |            | 0.00048     | Tons     |
| IN <sub>2</sub> O   | Hr            |                 | M          | MBtu   | k                 | 9                | Year                    |        | 1 Metri           | c Ton             |            | Ye          | ar       |
|                     |               |                 |            |        |                   |                  |                         |        |                   |                   |            |             |          |
| CH₄                 | 0.5           | MMBtu           | 0.001      | kg     | 0.001 Me          | tric Ton         | 8,760                   | Hr     | 1.1023            | Tons              | _          | 0.00483     | Tons     |
| O1 14               | Hr            |                 | M          | MBtu   | k                 | 3                | Year                    |        | 1 Metri           | c Ton             | _          | Ye          | ar       |
|                     |               |                 |            |        |                   | - 1 -            |                         |        |                   |                   |            |             |          |
|                     |               | 256.18          | Tons       | +      |                   | Tons             | +                       |        | 0.0048            |                   |            | 256.18      |          |
| lass Sum            |               | Year            |            |        | Ye                | ar               |                         |        | Ye                | ar                |            | Ye          | ar       |
|                     |               | CO <sub>2</sub> | 4          |        | N                 | l <sub>2</sub> O |                         |        | CH₄               |                   |            |             |          |
|                     | 256.18        | TPV             | X 1        |        | 0.000             | 5 TPV            | X 298                   |        | 0.0048            | TPV               | X 25       | 256.44      | Tone     |
| CO₂e                |               | 256.18          | Λ Ι        |        | 0.000             | 0.14             | 7 230                   |        | 0.0046            |                   | =          |             | ar       |
|                     | _             | .00.10          |            | +      |                   | U.14             |                         | +      | 1                 | 0.12              |            | 1 te        | al       |

<sup>&</sup>lt;sup>1</sup> AP-42 emission factors taken from Chapter 1.4. Based on natural gas with 1020 btu/scf, and corrected in calculations. From Chapter 1.5, propane emission factors are equivalent on a heat basis to methane factors, except the NO<sub>X</sub> factor is 1.5x higher.

### **Heater Treater at 14-9**

| Data:               |                 |                 |            |       |                   | AP-42 I   | EF (NG)                 |       | Based on          |                   | t of 1020 |             |         |
|---------------------|-----------------|-----------------|------------|-------|-------------------|-----------|-------------------------|-------|-------------------|-------------------|-----------|-------------|---------|
| <sub>2</sub> S mol% | 0.00%           | mol%            |            |       | PM=               | 7.6       | Lb/MMScf                |       |                   | GWI               | D*        | *Revised 11 | /29/201 |
| o Hours             | 8760            | Hrs             |            |       | NO <sub>X</sub> = | 100       | Lb/MMScf                |       |                   | N <sub>2</sub> O= | 298       |             |         |
| eat Content         | 1,462           | Btu/scf         | (Ind.)     |       | CO=               | 84        | Lb/MMScf                | :     |                   | CO <sub>2</sub> = | 1         |             |         |
| lowrate             | 0.342           | MScf/Hr         | (Ind.)     |       | VOC=              | 5.5       | Lb/MMScf                | :     |                   | CH <sub>4</sub> = | 25        |             |         |
| leat Input          | 500,000         | Btu/hr          |            |       | HAP=              | 1.89      | Lb/MMScf                |       |                   |                   |           |             |         |
| Jse btu/scf(EP      | A) for PM, NO   | k, CO, VO       | C. Factors |       | SO <sub>2</sub> = | 0.60      | Lb/MMScf                |       |                   |                   |           |             |         |
| or EPA STP (al      |                 |                 |            |       |                   | Table C-  | 1 & C-2)                |       | (Ta               | ble C-1 & C       | C-2)      |             |         |
|                     | STP (from Al.   |                 |            |       |                   |           | 8 Sub C <sup>'</sup> GH | IG    | ,                 | Part 98 Sub       |           |             |         |
| nd. STP:            | 60              |                 | 14.65      | •     |                   |           | ctors for C             |       |                   | ion Factors       |           |             |         |
| PASTP:              |                 | °F              | 14.696     | psia  | N <sub>2</sub> 0= |           | kg/MMBtu                |       | N <sub>2</sub> 0= |                   | kg/MMBtu  |             |         |
| leat Content        | 1,444           | Btu/scf         | (EPA)      |       | CO <sub>2</sub> = |           | kg/MMBtu                |       | CO <sub>2</sub> = | 53.06             | kg/MMBtu  |             |         |
| uel HHV Corr        | ection Factor   | 1.416           |            |       | CH <sub>4</sub> = |           | kg/MMBtu                |       | CH <sub>4</sub> = | 0.001             | kg/MMBtu  |             |         |
|                     |                 |                 |            |       | Heater            | Emissio   | n Calcula               | ation | IS                |                   |           |             |         |
| Pollutants          |                 |                 |            |       |                   |           |                         |       |                   |                   |           |             |         |
|                     | 7.6             | Lb              | 0.500      | MMBtu | Scf (             | EPA)      | 8,760                   | Hr    | 1 Ton             | 1.416             |           | 0.016       | Tons    |
| PM                  | MMScf (E        |                 |            | Hr    | 1,444             | Btu       | Year                    |       | 2,000 Lb          |                   | =         |             | ar      |
|                     | ,               | ,               |            |       | .,                |           |                         |       | -,,,,,            |                   |           |             |         |
|                     | 0.60            | Lb              | 0.500      | MMBtu | Scf (             | EPA)      | 8,760                   | Hr    | 1 Ton             | 1.416             |           | 0.001       | Tons    |
| SO <sub>2</sub>     | MMScf (E        | EPA)            |            | Hr    | 1,444             | Btu       | Year                    |       | 2,000 Lb          |                   | =         | Ye          | ar      |
|                     | ,               |                 |            |       |                   |           |                         |       | · '               |                   |           |             |         |
| NO                  | 100             | Lb              | 0.500      | MMBtu | Scf (             | EPA)      | 8,760                   | Hr    | 1 Ton             | 1.416             |           | 0.215       | Tons    |
| NO <sub>X</sub>     | MMScf (E        | EPA)            |            | Hr    | 1,444             | Btu       | Year                    |       | 2,000 Lb          |                   |           | Ye          | ar      |
|                     |                 |                 |            |       |                   |           | -                       |       |                   |                   |           |             |         |
| 00                  | 84              | Lb              | 0.500      | MMBtu | Scf (             | EPA)      | 8,760                   | Hr    | 1 Ton             | 1.416             |           | 0.180       | Tons    |
| СО                  | MMScf (E        | EPA)            |            | Hr    | 1,444             | Btu       | Year                    | . 1   | 2,000 Lb          |                   | =         | Ye          | ar      |
|                     |                 |                 |            |       |                   |           |                         |       |                   |                   |           |             |         |
| V00                 | 5.5             | Lb              | 0.500      | MMBtu | Scf (             | EPA)      | 8,760                   | Hr    | 1 Ton             | 1.416             |           | 0.012       | Tons    |
| voc                 | MMScf (E        | EPA)            |            | Hr    | 1,444             | Btu       | Year                    |       | 2,000 Lb          |                   | =         | Ye          | ar      |
|                     |                 |                 | A          |       |                   |           | All                     |       |                   |                   |           |             |         |
| HAP                 | 1.89            | Lb              | 0.500      | MMBtu | Scf (             | EPA)      | 8,760                   | Hr    | 1 Ton             | 1.416             |           | 0.004       | Tons    |
| ПАР                 | MMScf (E        | EPA)            |            | Hr    | 1,444             | Btu       | Year                    |       | 2,000 Lb          |                   | =         | Ye          | ar      |
|                     |                 |                 |            |       |                   |           |                         |       |                   |                   |           |             |         |
| CO <sub>2</sub>     | 0.5             | MMBtu           | 53.06      | kg    | 0.001 Me          | etric Ton | 8,760                   | Hr    | 1.1023            | 3 Tons            |           | 256.18      | Tons    |
| CO <sub>2</sub>     | Hr              |                 | M          | MBtu  | k                 | g         | Year                    |       | 1 Metri           | ic Ton            |           | Ye          | ar      |
|                     |                 |                 |            |       |                   |           |                         |       |                   |                   |           |             |         |
| N₂O                 | 0.5             | MMBtu           | 0.0001     | kg    | 0.001 Me          | etric Ton | 8,760                   | Hr    | 1.1023            | Tons              |           | 0.00048     | Tons    |
| 1120                | Hr              |                 | M          | MBtu  | k                 | g         | Year                    | •     | 1 Metri           | c Ton             | _         | Ye          | ar      |
|                     |                 |                 |            |       |                   |           |                         |       |                   |                   |           |             |         |
| CH₄                 | 0.5             | MMBtu           | 0.001      | kg    | 0.001 Me          | etric Ton | 8,760                   | Hr    | 1.1023            | Tons              |           | 0.00483     | Tons    |
| O1 14               | Hr              |                 | M          | MBtu  | k                 | g         | Year                    | •     | 1 Metri           | ic Ton            | _         | Ye          | ar      |
|                     |                 |                 |            |       |                   |           |                         |       |                   |                   |           |             |         |
|                     |                 | 256.18          | Tons       | +     | 0.000             | 5 Tons    | +                       |       | 0.0048            | Tons              |           | 256.18      | Tons    |
| Mass Sum            |                 | Year            |            |       | Ye                | ar        |                         |       | Ye                | ar                |           | Ye          | ar      |
|                     |                 | CO <sub>2</sub> |            |       | 1                 | I₂O       |                         |       | CH₄               |                   |           |             |         |
|                     |                 |                 |            |       |                   |           |                         |       |                   |                   |           |             |         |
|                     | 256.18          | TPY             | X 1        |       | 0.000             | 5 TPY     | X 298                   |       | 0.0048            | TPY               | X 25      | 256.44      | Tons    |
| CO₂e                | 2               | 256.18          |            | +     |                   | 0.14      |                         | +     |                   | 0.12              | =         | Ye          | ar      |
| 2-                  | CO <sub>2</sub> |                 |            |       |                   | N₂O       |                         |       |                   | CH₄               |           |             |         |

<sup>&</sup>lt;sup>1</sup> AP-42 emission factors taken from Chapter 1.4. Based on natural gas with 1020 btu/scf, and corrected in calculations. From Chapter 1.5, propane emission factors are equivalent on a heat basis to methane factors, except the NO<sub>X</sub> factor is 1.5x higher.

## Flare at 24-1

| Flare at 2                            | 4-1                            |                                 |                |                        |                         |                          |                         |                          |                   |                    |                   |                       |               |                  |
|---------------------------------------|--------------------------------|---------------------------------|----------------|------------------------|-------------------------|--------------------------|-------------------------|--------------------------|-------------------|--------------------|-------------------|-----------------------|---------------|------------------|
| Data                                  | Total                          |                                 | Separ          | ator Gas               | Tar                     | k Gas                    | Pilo                    | ot Gas                   | GWP (11/          | 29/2013)           | 40 CFR            | Part 98               | Sub C GHG E   | mission          |
| Volume                                | 12,701.740                     | scf/hr (Ind.)                   | 300.0          | Mscf/day               | 4.8                     | Mscf/day                 | 0.0                     | Mscf/day                 | N <sub>2</sub> 0= | 298                |                   | Factor                | s (Table C-1) |                  |
| H <sub>2</sub> S mol%                 | 0.0010%                        | mol%                            | 0.0010%        | mol%                   | 0.0000%                 | mol%                     | 0.0000%                 | mol%                     | CO <sub>2</sub> = | 1                  | $N_20 =$          | (                     | 0.0001        | kg/MMB           |
| Heat Content                          | 1427.25                        | Btu/scf (Ind)                   | 1416.00        | Btu/scf (Ind)          | 2124.62                 | Btu/scf (Ind)            | 2500.00                 | Btu/scf (Ind)            | CH <sub>4</sub> = | 25                 | AF                | 42 Emi                | issions Facto | ors <sup>7</sup> |
| VOC MW                                | 10.75                          | lb/lb-mol <sup>2</sup>          | 10.49          | lb/lb-mol <sup>2</sup> | 26.76                   | lb/lb-mol <sup>2</sup>   | 43.24                   | lb/lb-mol <sup>2</sup>   |                   |                    | NO <sub>X</sub> = |                       | 0.068         | lb/MMBt          |
| CO <sub>2</sub>                       | 0.81%                          | mol%                            | 0.82%          | mol%                   | 0.18%                   | mol%                     | 0.00% mol%              |                          |                   |                    | CO=               |                       | 0.37          | lb/MMBt          |
| CH₄                                   | 61.80%                         | mol%                            | 62.31%         | mol%                   | 30.03%                  |                          | 0.00%                   | mol%                     |                   |                    | PM <sub>1</sub> = |                       | 40            | μg/L             |
| C <sub>6</sub>                        | 1.07                           | lb/lb-mol <sup>2</sup>          | 1.06           | lb/lb-mol <sup>2</sup> | 1.78                    | lb/lb-mol <sup>2</sup>   | 0.00                    | lb/lb-mol <sup>2</sup>   |                   |                    |                   |                       |               |                  |
| OP Hours                              | 8760                           | Hrs                             |                |                        |                         |                          |                         |                          | (Ind. STP)        | scf/lbmol=         | 380.67            | 60 °F                 | 14.65         | 5 psia           |
| Destruction Eff                       | 98.00%                         | DRE                             | Hea            | at Input               | 18.13                   | MMBtu/hr1                |                         |                          | (EPA STP)         | scf/lbmol=         | 385.5             | 68 °F                 | 14.696        | psia             |
|                                       |                                |                                 |                | Po                     | tential F               | lare Emissi              | on Calcu                | lations                  |                   |                    |                   |                       |               |                  |
| Pollutants                            |                                |                                 |                |                        |                         |                          |                         |                          |                   |                    |                   |                       |               |                  |
| PM,                                   | 40                             | μg                              | 12701.7        | scf (Ind.)             | 2.2E-9 lb               | 8,760                    | Hr                      | 1 Ton                    | 28.31685          | L 1.01             | scf(EPA)          |                       | 0.141         | Tons             |
| FWI <sub>1</sub>                      | L                              |                                 |                | Hr                     | μg                      | Yea                      | ar                      | 2,000 Lb                 | scf (EPA          | 1                  | scf(Ind.)         | -                     | Yea           | r                |
|                                       | 1000                           | 00 4                            | =              |                        |                         |                          |                         |                          |                   |                    |                   |                       |               |                  |
| SO <sub>2</sub>                       | 168.3                          | Lb SO <sub>2</sub> <sup>4</sup> |                | MScf (Ind.)            | 0.001%                  | H <sub>2</sub> S MoI%    | 8,760                   |                          | 1 Ton             |                    |                   | = -                   |               | 2 Tons           |
| _                                     | MScf (In                       | a.)                             |                | Hr                     |                         |                          | Year                    |                          | 2,000 Lb          |                    |                   |                       | Yea           | r                |
|                                       | 0.068                          | lb                              | 18 120         | MMBtu                  | 8,760                   | Шr                       |                         | Ton                      |                   |                    |                   |                       | 5 300         | Tons             |
| NO <sub>x</sub>                       | MMBtı                          |                                 | 10.123         | Hr                     |                         | /ear                     | incharge continues.     | 00 Lb                    |                   |                    |                   | _                     | Yea           |                  |
|                                       | IVIIVID((                      |                                 |                |                        |                         |                          | 1                       |                          |                   |                    |                   |                       |               |                  |
| со                                    | 0.37                           | lb                              | 18.129         | MMBtu                  | 8,760                   | Hr                       | 1                       | Ton                      | 1                 |                    |                   |                       | 29.379        | Tons             |
|                                       | MMBtu                          | ı                               |                | Hr                     |                         | /ear                     | 2,0                     | 00 Lb                    |                   |                    | 1                 |                       | Yea           | r                |
|                                       |                                |                                 | I              | 1                      |                         |                          |                         |                          |                   |                    |                   |                       |               |                  |
| VOC⁵                                  | ,                              | 12,701.7 Scf (Ind.) 1 lb-m      |                |                        |                         | Lb VOC                   | 8,760                   | 400010101010101          | 1 Ton             | 2.00%              | Inv. DRE          |                       |               | 2 Tons           |
|                                       | Hr                             | 1                               | 380.67         | scf (Ind.)             | Lb                      | -Mole                    |                         | /ear                     | 2,000 Lb          | _                  |                   |                       | Yea           | r                |
|                                       | 12,701.7                       | Scf (Ind.)                      | 1              | lb-mol                 | 1.07                    | Lb C <sub>6</sub>        | 8,760                   | Hr                       | 1 Ton             | 2.00%              | Inv. DRE          |                       | 3.140         | Tons             |
| HAPs <sup>8</sup>                     | Hr                             | Joor (inta.)                    |                | scf (Ind.)             | sortions. Norticals     | -Mole                    | Year                    |                          | 2,000 Lb          | 2.0070             |                   | = -                   | Yea           |                  |
|                                       |                                |                                 | 000.07         | 00: (0.)               |                         | IVIOIO                   |                         | cai                      | 2,000 25          |                    |                   |                       |               |                  |
| CO <sub>2</sub> 5,6                   | 98.00% DRE                     | 1.11E+08                        | Scf (Ind.)     | 1.61                   | lb-mol C                | O <sub>2</sub> (stoich.) | 1                       | lb-mol gas               | 44.01             | Ib CO <sub>2</sub> | 1 Ton             |                       | 10,132.14     | Tons             |
| of Combustion                         |                                | Yr                              |                | 1                      | lb-mol g                | as (stoich.)             | 380.67                  | scf (Ind.)               | lb-mol            | e CO <sub>2</sub>  | 2,000 Lb          |                       | Yea           | r                |
|                                       |                                | 0.44.13                         |                |                        |                         |                          |                         |                          |                   |                    | 1                 |                       |               |                  |
| CO <sub>2</sub>                       | 1.11E+08<br>Yr                 | Scf (Ind.)                      | 0.81%          | mol% CO <sub>2</sub>   |                         | lb-mol                   | Shelehelested           | Lb CO2                   | 1 Ton             |                    |                   | = -                   |               | Tons             |
| of Fuel                               | Yr                             |                                 | Sp.            |                        | 380.67                  | scf (Ind.)               | Lb-mole                 |                          | 2,000 Lb          |                    |                   | L                     | Yea           | r                |
|                                       | 0.001 M Ton                    | 0.001427                        | MMRtu          | 12,701.7               | Scf (Ind.)              | 0.0001                   | ka                      | 8,760                    | Hr                | 1.1023             | Tons              |                       | 0.017         | Tons             |
| N₂O                                   | kg                             | Scf (In                         | retoctoots.    | Hr                     |                         | MME                      |                         |                          | ar                |                    | ric Ton           | 1 = -                 | Yea           |                  |
|                                       |                                |                                 |                |                        |                         |                          |                         |                          |                   |                    |                   |                       |               |                  |
| CH₄                                   | 1.11E+08                       | Scf (Ind.)                      | 2.00%          | Inv. DRE               | 61.80%                  | mol% CH <sub>4</sub>     | 1                       | lb-mol                   | 16.043            | Lb CH4             | ****              |                       | 28.98         | Tons             |
| Uncombusted                           | Yr                             |                                 |                |                        |                         |                          | 380.675                 | scf (Ind.)               | Lb-m              | ole                | 2,000 Lb          | _                     | Year          |                  |
|                                       |                                |                                 |                |                        |                         |                          | -                       |                          |                   |                    |                   |                       |               |                  |
|                                       | 10,184.23                      | Tons                            | +              |                        | 0.0175 Tons             |                          | +                       |                          | 28.98 Tons        |                    | <u> </u>          |                       | 10,213.22     | _                |
| Mass Sum                              | Year                           | CO2                             |                |                        |                         | /ear                     |                         |                          | Year              |                    |                   |                       | Yea           | r                |
|                                       |                                | 002                             |                |                        |                         | N2O                      |                         |                          |                   | CH4                |                   | $\longrightarrow$     |               |                  |
|                                       | 10,184.23                      | TPY                             | X 1            |                        | 0.0175                  | TPY                      | X 298                   |                          | 28.98             | TP :               | X 25              |                       | 10,913.91     | Tone             |
| CO₂e                                  | 10                             | 184.23                          |                | +                      |                         | 5.22                     |                         | +                        |                   | 724.46             |                   | =  -                  | Yea           |                  |
| 2                                     |                                | CO2                             |                |                        | N2O                     |                          |                         |                          |                   | CH4                |                   |                       |               | T                |
| <sup>1</sup> Date d Lleat C           | apacity (MMBtu,                | /Us) - Flavor                   | ata (Caf/      | llw\ * lloot (         | `antant /               |                          | N 4N 4D+/1              | 0 <sup>6</sup> D+)       |                   |                    |                   |                       |               | _                |
|                                       |                                |                                 |                |                        |                         |                          |                         |                          |                   |                    |                   |                       |               | -                |
|                                       | $nole$ ) = $\Sigma$ (Mole?     |                                 |                |                        |                         |                          |                         |                          | IG Spreed :       | Sheet for          | gas anal          | ysis                  |               |                  |
|                                       | intained <500 lb               |                                 |                |                        |                         |                          | •                       |                          |                   |                    |                   |                       |               |                  |
|                                       | $H_2S$ (Lb/hr) = Vo            | lume (Scf/h                     | r) * (1 lb-    | -mol/380.67            | 7) *(H <sub>2</sub> S n | nol%) * (34.             | .08 Lb H <sub>2</sub> S | (Lb-mol)                 |                   |                    |                   |                       |               |                  |
| <sup>4</sup> SO <sub>2</sub> Conversi | on Factor 168.3                | Lb SO <sub>2</sub> /MSo         | f of Gas       |                        |                         |                          |                         |                          |                   |                    |                   |                       |               |                  |
| - 2 - 2                               | 223.0                          |                                 |                | f) */11h N/10          | ام/300 <i>د</i> .       | □<br>7 Scf)* (64.0       | 1661450                 | - /I h-Mala\             |                   |                    |                   |                       |               | +                |
| 5                                     |                                |                                 | JCI/IVIJC      | 1) (TED-1410           | 16/300.0                | , July (04.0             | 700 ED 30               | <sub>2/</sub> LD-IVIOIE) |                   |                    |                   |                       |               | +                |
|                                       | e flare is 98% eff             |                                 |                |                        |                         |                          | -                       |                          |                   |                    |                   | $\sqcup \sqcup$       |               | -                |
|                                       | sing the gas anal              |                                 | by reliance of | han : : : :            |                         | aud :                    | tho:                    | han                      | <br>              | d! ' !             | 0.04=1:           |                       |               | <br>             |
|                                       | ere, Y <sub>j</sub> = mole fra |                                 |                |                        |                         |                          |                         |                          |                   | ın aloxid          | e, etc.) ar       | ια κ <sub>j</sub> = n | umper of ca   | noarı            |
|                                       | ydrocarbon cons                |                                 |                |                        | bon diox                | ide, 2 for e             | thane, 3                | or propane               | e, etc.           |                    |                   |                       |               |                  |
| -                                     | d to be "lightly s             |                                 |                |                        |                         |                          |                         |                          |                   |                    |                   | $\square$             |               | -                |
| Hexane is a H                         | IAP. Assume He                 | kanes+ or H                     | exane are      | HAPS                   |                         |                          |                         |                          |                   |                    |                   |                       |               | 1                |

## Flare at 13-11

| 14.65<br>14.696<br>0.204<br>Year                                                          | kg/MM ors <sup>7</sup> Ib/MME Ib/MME µg/L  5 psia 6 psia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 001<br>ions Factor<br>168<br>37<br>0<br>14.65<br>14.696<br>0.204<br>Year<br>0.053<br>Year | kg/MM ors <sup>7</sup> Ib/MME Ib/MME µg/L  5 psia 6 psia 4 Tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14.65<br>14.696<br>0.204<br>Year                                                          | lb/MME lb/MME lb/MME lb/MME lpg/L lb/mme lb/ |
| 14.65<br>14.696<br>0.204<br>Year<br>0.053                                                 | lb/MME lb/MME μg/L  5 psia 6 psia  4 Tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 14.65<br>14.696<br>0.204<br>Year<br>0.053                                                 | lb/MME  µg/L  5 psia 6 psia 4 Tons  Transatr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0 14.65<br>14.696<br>0.204<br>Year<br>0.053                                               | μg/L  5 psia 6 psia 4 Tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14.65<br>14.696<br>0.204<br>Year<br>0.053                                                 | 5 psia<br>6 psia<br>4 Tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.204<br>Year<br>0.053                                                                    | psia  Tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.204<br>Year<br>0.053                                                                    | psia  Tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.204<br>Year<br>0.053<br>Year                                                            | 4 Tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Vear<br>0.053<br>Vear                                                                     | ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vear<br>0.053<br>Vear                                                                     | ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vear<br>0.053<br>Vear                                                                     | ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.053<br>Year                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Year                                                                                      | 3 Tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Year                                                                                      | 3 Tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.065                                                                                     | ır                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                           | 5 Tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Year                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 43.885                                                                                    | 5 Tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Year                                                                                      | ır                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 49.923<br>Year                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ieai                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5.910                                                                                     | 0 Tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Year                                                                                      | ır                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15,182.98                                                                                 | 3 Tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Year                                                                                      | ır                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 64.05                                                                                     | E Tono                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1001                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.0261                                                                                    | 1 Tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Year                                                                                      | ır                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                           | 4 Tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Year                                                                                      | ır                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 15 280 10                                                                                 | 0 Tone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Year                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16,284.32                                                                                 | 2 Tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Year                                                                                      | ır                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                           | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                           | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                           | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                           | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| iber of car                                                                               | arbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ber of car                                                                                | arbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ber of car                                                                                | arbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1                                                                                         | Yea<br>64.95<br>Yea<br>0.026<br>Yea<br>41.14<br>Yea<br>15,289.10<br>Yea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

### **Flare at 13-15**

| Flare at 1                 |                                                     |                                 |             |                        |                          |                          |                         |                        |                   |                    |                   |            |                |          |
|----------------------------|-----------------------------------------------------|---------------------------------|-------------|------------------------|--------------------------|--------------------------|-------------------------|------------------------|-------------------|--------------------|-------------------|------------|----------------|----------|
| Data                       | Total                                               |                                 | Separ       | ator Gas               | Tan                      | k Gas                    |                         | t Gas                  | GWP (11/          |                    | 40 CFR            |            | Sub C GHG Er   | mission  |
| Volume                     | 13,780.828                                          | scf/hr (Ind.)                   |             | Mscf/day               | 5.7                      | Mscf/day                 |                         | Mscf/day               | N <sub>2</sub> 0= | 298                |                   | Factor     | s (Table C-1)  |          |
| H₂S mol%                   | 0.0004%                                             | mol%                            | 0.0005%     |                        | 0.0000%                  |                          | 0.0000%                 |                        | CO <sub>2</sub> = | 1                  | $N_20=$           |            | 0.0001         | kg/MMBt  |
| Heat Content               | 1372.19                                             | Btu/scf (Ind)                   |             | Btu/scf (Ind)          |                          |                          |                         | Btu/scf (Ind)          | CH <sub>4</sub> = | 25                 | AF                | 42 Emi     | issions Facto  | rs′      |
| VOC MW                     | 9.28                                                | lb/lb-mol <sup>2</sup>          | 8.97        | lb/lb-mol <sup>2</sup> | 26.76                    | lb/lb-mol <sup>2</sup>   | 0.15                    | lb/lb-mol <sup>2</sup> |                   |                    | NO <sub>X</sub> = |            | 0.068          | lb/MMBti |
| CO <sub>2</sub>            | 0.76%                                               | mol%                            | 0.77%       | mol%                   | 0.18%                    | mol%                     | 0.50%                   |                        |                   |                    | CO=               |            | 0.37           | lb/MMBtu |
| CH₄                        | 63.99%                                              | mol%                            | 64.59%      |                        | 30.03%                   |                          | 95.00%                  |                        |                   |                    | PM <sub>1</sub> = |            | 40             | μg/L     |
| C <sub>6</sub>             | 0.85                                                | lb/lb-mol <sup>2</sup>          | 0.83        | lb/lb-mol <sup>2</sup> | 1.78                     | lb/lb-mol <sup>2</sup>   | 0.01                    | lb/lb-mol <sup>2</sup> |                   |                    |                   |            |                |          |
| OP Hours                   | 8760                                                | Hrs                             |             |                        |                          |                          |                         |                        | (Ind. STP)        | scf/lbmol=         | 380.67            | 60 °F      | 14.65          | psia     |
| Destruction Eff            | 98.00%                                              | DRE                             | Hea         | at Input               | 18.91                    | MMBtu/hr1                |                         |                        | (EPASTP)          | scf/lbmol=         | 385.5             | 68 °F      | 14.696         | psia     |
|                            |                                                     |                                 |             | Po                     | tential F                | lare Emissi              | ion Calcu               | lations                |                   |                    |                   |            |                |          |
| Pollutants                 |                                                     |                                 | ı           |                        |                          |                          |                         |                        |                   |                    |                   |            |                |          |
| PM,                        | 40                                                  | μд                              |             | scf (Ind.)             | 2.2E-9 lb                | 8,760                    |                         | 1 Ton                  | 28.31685          | _                  | scf(EPA)          |            | 0.153          | _        |
| '                          | L                                                   |                                 |             | Hr                     | μg                       | Yea                      | ar                      | 2,000 Lb               | scf (EPA          | ) 1                | scf(Ind.)         |            | Year           | •        |
|                            | 168.3                                               | Lb SO <sub>2</sub> <sup>4</sup> | 13.781      | MScf (Ind.)            | 0.000%                   | H <sub>2</sub> S Mol%    | 8,760                   | Úг                     | 1 Ton             |                    |                   |            | 0.045          | <b>-</b> |
| SO <sub>2</sub>            | MScf (In                                            |                                 | 13.761      | Hr                     | 0.000%                   | H2O IVIOI /0             | - 4                     | ear                    | 2,000 Lb          |                    |                   | = -        | 0.045<br>Year  |          |
|                            | IVISCI (III                                         | u.)                             |             | 111                    |                          |                          | -4                      | Cai                    | 2,000 Lb          |                    |                   |            | Icai           |          |
|                            | 0.068                                               | lb                              | 18.910      | MMBtu                  | 8,760                    | Hr                       |                         | Ton                    |                   |                    |                   |            | 5.632          | Tons     |
| NO <sub>x</sub>            | MMBti                                               |                                 |             | Hr                     |                          | 'ear                     |                         | 00 Lb                  |                   |                    |                   | _          | Year           |          |
|                            |                                                     |                                 |             |                        |                          |                          |                         |                        |                   |                    |                   |            |                |          |
| со                         | 0.37                                                | lb                              | 18.910      | MMBtu                  | 8,760                    | Hr                       |                         | Ton                    |                   |                    |                   |            | 30.645         | Tons     |
| 00                         | MMBt                                                | u                               |             | Hr                     | ١                        | 'ear                     | 2,0                     | 00 Lb                  |                   | A D                | 1                 |            | Year           | :        |
|                            |                                                     |                                 | l .         | l                      |                          |                          |                         |                        |                   |                    | <b></b>           |            |                | _        |
| VOC⁵                       | 13,780.8                                            | Scf (Ind.)                      |             | lb-mol                 |                          | Lb VOC                   | 8,760                   | 400000000000           | 1 Ton             | 2.00%              | Inv. DRE          |            | 29.424<br>Year |          |
|                            | Hr                                                  |                                 | 380.67      | scf (Ind.)             | Lb                       | -Mole                    | Y                       | 'ear                   | 2,000 Lb          |                    |                   |            | rear           |          |
|                            | 13,780.8                                            | Scf (Ind.)                      | 1           | lb-mol                 | 0.85                     | Lb C <sub>6</sub>        | 8,760                   | Hr                     | 1 Ton             | 2.00%              | Inv. DRE          |            | 2.689          | Tons     |
| HAPs <sup>8</sup>          | Hr                                                  | 100. ()                         | 380.67      | scf (Ind.)             | COSTOSIO, VOCASSIONIO    | -Mole                    |                         | 'ear                   | 2,000 Lb          |                    |                   | =          | Year           |          |
|                            |                                                     |                                 |             | . ,                    |                          |                          |                         |                        |                   |                    |                   |            |                |          |
| CO <sub>2</sub> 5,6        | 98.00% DRE                                          | 1.21E+08                        | . ,         | 1.53                   | Todanadani dan           | O <sub>2</sub> (stoich.) | A legeopoopoops,        | lb-mol gas             | 44.01             | lb CO <sub>2</sub> | 1 Ton             | _          | 10,491.28      | Tons     |
| of Combustion              |                                                     | Yr                              |             | 1                      | lb-mol g                 | as (stoich.)             | 380.67                  | scf (Ind.)             | lb-mol            | e CO <sub>2</sub>  | 2,000 Lb          |            | Year           | :        |
| 00                         | 1.21E+08                                            | Scf (Ind.)                      | 1 0 76%     | m alg/ CO              | 1                        | lb-mol                   | 14401                   | Lb CO2                 | 1 Ton             |                    |                   |            | 52.81          | Tono     |
| CO <sub>2</sub><br>of Fuel | 1.21E+06<br>Yr                                      | SCI (IIIU.)                     | 0.70%       | mol% CO <sub>2</sub>   |                          | scf (Ind.)               | Lb-mole                 | LU COZ                 | 2,000 Lb          |                    |                   | = -        | Year           |          |
| of ruei                    | .,                                                  |                                 | P           |                        | 300.07                   | 301 (IIIu.)              | LED INIOIC              |                        | 2,000 Lb          |                    |                   |            | Icai           |          |
| N.O.                       | 0.001 M Ton                                         | 0.001372                        | MMBtu       | 13,780.8               | Scf (Ind.)               | 0.0001                   | kg                      | 8,760                  | Hr                | 1.1023             | Tons              |            | 0.0183         | Tons     |
| N <sub>2</sub> O           | kg Scf (I                                           |                                 | nd.) Hr     |                        |                          | MME                      | Btu                     | Ye                     | ear 1 Metr        |                    | ric Ton           | 1 = 1      | Year           | ŕ        |
|                            |                                                     |                                 |             |                        |                          |                          |                         |                        |                   |                    | ,                 |            |                |          |
| CH₄                        | 1.21E+08                                            | Scf (Ind.)                      | 2.00%       | Inv. DRE               | 63.99%                   | mol% CH <sub>4</sub>     | VOE020202               | lb-mol                 |                   | Lb CH4             | 1 Ton             |            | 32.56          |          |
| Uncombusted                | Yr                                                  |                                 |             |                        | 4                        |                          | 380.675                 | scf (Ind.)             | Lb-m              | ole                | 2,000 Lb          |            | Year           | ,        |
|                            | 10,544.09                                           | Tono                            |             |                        | 0.0183                   | Tono                     | <b>P</b>                |                        | 22                | EG Tono            |                   |            | 10,576.66      | Tono     |
| Mass Sum                   | 10,544.09<br>Year                                   |                                 | +           |                        | Acceptance to the second | ear                      | +                       |                        | 32.56 Tons        |                    | <u>s</u> =        |            | Year           | _        |
| mass cam                   | tear                                                | CO2                             |             |                        | M.                       | N2O                      |                         |                        |                   | Year<br>CH4        |                   |            |                | T        |
|                            |                                                     | 1                               |             |                        |                          | INZO                     |                         |                        |                   | ОП4                |                   |            |                |          |
|                            | 10,544.09                                           | TPY                             | X 1         |                        | 0.0183                   | TPY                      | X 298                   |                        | 32.56             | TP :               | X 25              |            | 11,363.42      | Tons     |
| CO₂e                       | 10                                                  | ,544.09                         |             | +                      |                          | 5.44                     |                         | +                      |                   | 813.89             | =                 |            | Year           |          |
|                            |                                                     | CO2                             |             |                        |                          | N2O                      |                         |                        |                   | CH4                |                   |            |                |          |
| <sup>1</sup> Rated Heat C  | apacity (MMBtu                                      | /Hr) = Flowr                    | ate (Scf/   | Hr) * Heat (           | ontent (                 | Rtu/Scf) * (             | MMRtu/1                 | ∩ <sup>6</sup> Btu)    |                   |                    |                   |            |                |          |
|                            | nole) = $\Sigma$ (Mole)                             |                                 |             |                        |                          |                          |                         |                        | IC Sprood 9       | Shoot for          | ranc anali        | vcic       |                |          |
|                            |                                                     |                                 |             |                        |                          |                          |                         |                        | io spreed :       | sneet roi          | gas anai          | ysis       |                | -        |
| Has to be ma               | intained <500 lb                                    |                                 |             |                        |                          |                          |                         |                        |                   |                    |                   |            |                | -        |
|                            | $H_2S$ (Lb/hr) = Vo                                 | lume (Scf/h                     | r) * (1 lb- | -mol/380.6             | 7) *(H₂S n               | nol%) * (34              | .08 Lb H <sub>2</sub> S | /Lb-mol)               |                   |                    |                   |            |                |          |
| <sup>4</sup> SO₂ Conversi  | on Factor 168.3                                     | Lb SO <sub>2</sub> /MSo         | f of Gas    |                        |                          |                          |                         |                        |                   |                    |                   |            |                |          |
|                            |                                                     | =(1.000                         | Scf/MSc     | f) *(1Lb-Mc            | le/380.6                 | 7 Scf)* (64.0            | 066 Lb SO               | /Lb-Mole)              |                   |                    | -                 |            |                |          |
| 5 Accumina +1-             | a flara is 000/ -ff                                 |                                 | . ,         | , ,,                   | .,                       | ., (                     |                         |                        |                   |                    |                   |            |                |          |
|                            | e flare is 98% eff<br>sing the gas anal             |                                 |             |                        |                          |                          |                         |                        |                   |                    |                   |            |                | -        |
|                            | sing the gas anal<br>ere, Y <sub>i</sub> = mole fra |                                 | hydrocar    | hon constit            | l<br>luents' i /         | such as mo               | thane et                | hane pron              | lane carbo        | n diovid           | e etclar          | nd R n     | umher of ca    | rhon     |
|                            | •                                                   |                                 |             |                        |                          |                          |                         |                        |                   | ii uioxiu          | c, eic.j di       | iu isj– II | umber of cd    | IDON     |
|                            | ydrocarbon cons                                     |                                 |             |                        | nou glox                 | iue, ∠ tor e             | mane, 31                | or propane             | e, etc.           |                    | 1                 |            |                | Т        |
| -                          | d to be "lightly:                                   |                                 |             |                        |                          |                          |                         |                        |                   |                    |                   |            |                | -        |
| Hexane is a F              | IAP. Assume He                                      | xanes+ or H                     | exane are   | HAPS                   |                          |                          |                         |                        |                   |                    |                   |            |                |          |

## Flare 18-13

| Flare 18-1                            | 3                                                   |                                 |                        |                        |                                                  |                          |                         |                        |                   |                    |                   |              |                   |                 |
|---------------------------------------|-----------------------------------------------------|---------------------------------|------------------------|------------------------|--------------------------------------------------|--------------------------|-------------------------|------------------------|-------------------|--------------------|-------------------|--------------|-------------------|-----------------|
| Data                                  | Total                                               |                                 | Separator Gas Tank Gas |                        |                                                  | Pilo                     | ot Gas                  | GWP (11/2              | 29/2013)          | 40 CFR             | Part 98           | Sub C GHG Er | mission           |                 |
| Volume                                | 12,660.867                                          | scf/hr (Ind.)                   | 300.0                  | Mscf/day               | 3.9                                              | Mscf/day                 | 0.0                     | Mscf/day               | N <sub>2</sub> 0= | 298                |                   | Factor       | s (Table C-1)     |                 |
| H <sub>2</sub> S mol%                 | 0.0006%                                             | mol%                            | 0.0006%                | mol%                   | 0.0000%                                          | mol%                     | 0.0000%                 | mol%                   | CO <sub>2</sub> = | 1                  | $N_20 =$          | (            | 0.0001            | kg/MMBt         |
| Heat Content                          | 1421.38                                             | Btu/scf (Ind)                   | 1412.33                | Btu/scf (Ind)          | 2124.62                                          | Btu/scf (Ind)            | 1020.00                 | Btu/scf (Ind)          | CH <sub>4</sub> = | 25                 | AF                | 42 Emi       | issions Factor    | rs <sup>7</sup> |
| VOC MW                                | 10.55                                               | lb/lb-mol <sup>2</sup>          | 10.34                  | lb/lb-mol <sup>2</sup> | 26.76                                            | lb/lb-mol <sup>2</sup>   | 0.15                    | lb/lb-mol <sup>2</sup> |                   |                    | NO <sub>X</sub> = |              | 0.068             | lb/MMBtu        |
| CO <sub>2</sub>                       | 0.76%                                               | mol%                            | 0.76%                  | mol%                   | 0.18%                                            | mol%                     | 0.50%                   | mol%                   |                   |                    | CO=               |              | 0.37              | lb/MMBtu        |
| CH <sub>4</sub>                       | 62.23%                                              | mol%                            | 62.65%                 | mol%                   | 30.03%                                           | mol%                     | <del>95.00%</del>       |                        |                   |                    | PM <sub>1</sub> = |              | 40                | μg/L            |
| C <sub>6</sub>                        | 1.10                                                | lb/lb-mol <sup>2</sup>          | 1.09                   | lb/lb-mol <sup>2</sup> | 1.78                                             | lb/lb-mol <sup>2</sup>   | 0.01                    | lb/lb-mol <sup>2</sup> |                   |                    |                   |              |                   |                 |
| OP Hours                              | 8760                                                | Hrs                             |                        |                        |                                                  |                          |                         |                        | (Ind. STP)        | scf/lbmol=         | 380.67            | 60 °F        | 14.65             | psia            |
| Destruction Eff                       | 98.00%                                              | DRE                             | Hea                    | at Input               | 18.00                                            | MMBtu/hr1                |                         |                        | (EPASTP)          | scf/lbmol=         | 385.5             | 68 °F        | 14.696            | psia            |
|                                       |                                                     |                                 |                        | Po                     | tential F                                        | lare Emissi              | on Calcu                | lations                |                   |                    |                   |              |                   |                 |
| Pollutants                            |                                                     |                                 |                        |                        |                                                  |                          |                         |                        |                   |                    |                   |              |                   |                 |
| PM,                                   | 40                                                  | μg                              |                        | scf (Ind.)             | 2.2E-9 lb                                        | 8,760                    |                         | 1 Ton                  | 28.31685          | L 1.01             | scf(EPA)          | l _ l        | 0.140             | Tons            |
| 1 IM <sub>1</sub>                     | L                                                   |                                 |                        | Hr                     | μg                                               | Yea                      | ar                      | 2,000 Lb               | scf (EPA          | ) 1                | scf(Ind.)         | _ [          | Year              |                 |
|                                       | 100.0                                               | 00 4                            |                        |                        |                                                  |                          |                         |                        |                   |                    |                   |              |                   |                 |
| SO <sub>2</sub>                       | 168.3                                               | Lb SO <sub>2</sub> <sup>4</sup> | 12.661                 | MScf (Ind.)            | 0.001%                                           | H <sub>2</sub> S Mol%    | 8,760                   |                        | 1 Ton             |                    |                   | = -          | 0.057<br>Year     |                 |
|                                       | MScf (In                                            | a.)                             |                        | Hr                     |                                                  |                          | L                       | 'ear                   | 2,000 Lb          |                    |                   |              | Year              |                 |
|                                       | 0.068                                               | lb                              | 17 996                 | MMBtu                  | 8,760                                            | Hr                       |                         | Ton                    |                   |                    |                   |              | 5.360             | Tons            |
| NO <sub>x</sub>                       | MMBt                                                |                                 | 17.550                 | Hr                     |                                                  | rear                     |                         | 00 Lb                  |                   |                    |                   | _            | Year              |                 |
|                                       |                                                     | _                               |                        |                        |                                                  | J. A.                    |                         |                        |                   |                    |                   | _            |                   |                 |
| co                                    | 0.37                                                | lb                              | 17.996                 | MMBtu                  | 8,760                                            | Hr                       | 1                       | Ton                    |                   |                    |                   |              | 29.164            | Tons            |
| CO                                    | MMBt                                                | u                               |                        | Hr                     | ١                                                | /ear                     | 2,0                     | 00 Lb                  |                   |                    | h                 |              | Year              |                 |
|                                       |                                                     |                                 |                        | l                      |                                                  |                          |                         |                        |                   |                    |                   |              |                   |                 |
| VOC5                                  | 12,660.9                                            | Scf (Ind.)                      |                        | lb-mol                 |                                                  | Lb VOC                   | 8,760                   | 400000000000           | 1 Ton             | 2.00%              | Inv. DRE          |              | 30.742            |                 |
|                                       | Hr                                                  |                                 | 380.67                 | scf (Ind.)             | Lb                                               | -Mole                    | Y                       | ear                    | 2,000 Lb          |                    |                   |              | Year              |                 |
|                                       | 12,660.9                                            | Scf (Ind.)                      | 1                      | lb-mol                 | 1.10                                             | Lb C <sub>6</sub>        | 8.760                   | Hr                     | 1 Ton             | 2.00%              | Inv. DRE          |              | 3.215             | Tons            |
| HAPs <sup>8</sup>                     | Hr                                                  | 00: (0.)                        |                        | scf (Ind.)             | Toology, 40010010                                | -Mole                    | -,                      | 'ear                   | 2,000 Lb          | 2.0070             |                   |              | Year              |                 |
|                                       |                                                     |                                 |                        |                        |                                                  | 141010                   |                         | oui,                   | , -,              |                    |                   |              |                   |                 |
| CO <sub>2</sub> 5,6                   | 98.00% DRE                                          | 1.11E+08                        | Scf (Ind.)             | 1.60                   | lb-mol C                                         | O <sub>2</sub> (stoich.) | 1                       | lb-mol gas             | 44.01             | lb CO <sub>2</sub> | 1 Ton             |              | 10,042.79         | Tons            |
| of Combustion                         |                                                     | Yr                              |                        | 1                      | lb-mol g                                         | as (stoich.)             | 380.67                  | scf (Ind.)             | lb-mole           | e CO <sub>2</sub>  | 2,000 Lb          |              | Year              |                 |
| 00                                    | 1.115.00                                            | Cof (lad )                      | 0.769/                 |                        | 1                                                | lb mal                   | 14401                   | 16.000                 | 1 Tan             |                    | 1                 |              | 40.50             | Tono            |
| CO <sub>2</sub>                       | 1.11E+08<br>Yr                                      | Scf (Ind.)                      | 0.76%                  | mol% CO <sub>2</sub>   |                                                  | scf (Ind.)               | Lb-mole                 | Lb CO2                 | 1 Ton<br>2,000 Lb |                    |                   | = -          | 48.50<br>Year     |                 |
| of Fuel                               | .,                                                  |                                 | P                      |                        | 300.07                                           | 301 (IIIu.)              | LO MOIC                 |                        | 2,000 Lb          |                    |                   |              | 1001              |                 |
|                                       | 0.001 M Ton                                         | 0.001421                        | MMBtu                  | 12.660.9               | Scf (Ind.)                                       | 0.0001                   | ka                      | 8,760                  | Hr                | 1.1023             | Tons              |              | 0.0174            | Tons            |
| N <sub>2</sub> O                      | kg Scf (                                            |                                 | nd.) H                 |                        |                                                  | MME                      |                         | Ye                     |                   |                    | ric Ton           | 1 = 1        | Year              |                 |
|                                       |                                                     |                                 |                        |                        |                                                  |                          |                         |                        |                   |                    |                   |              |                   |                 |
| CH <sub>4</sub>                       | 1.11E+08                                            | Scf (Ind.)                      | 2.00%                  | Inv. DRE               | 62.23%                                           | mol% CH <sub>4</sub>     | *CECECEO                | lb-mol                 |                   | Lb CH4             | 1 Ton             |              | 29.09             |                 |
| Uncombusted                           | Yr                                                  |                                 |                        |                        | 1                                                |                          | 380.675                 | scf (Ind.)             | Lb-m              | ole                | 2,000 Lb          |              | Year              | •               |
|                                       | (2,22,22                                            | _                               |                        |                        |                                                  | _                        | <b>-</b>                |                        |                   |                    |                   |              |                   | 1_              |
| Mass Sum                              | 10,091.29                                           |                                 | +                      |                        | 0.0174 Tons                                      |                          | +                       |                        | 29.09 Tons        |                    | <u>S</u> =        |              | 10,120.40<br>Year | -               |
| wass sum                              | Year                                                | CO2                             |                        |                        | <del>                                     </del> | /ear                     |                         |                        |                   | Year               |                   |              | Icai              | T               |
|                                       |                                                     | J                               |                        |                        |                                                  | N2O                      |                         |                        |                   | CH4                |                   |              |                   |                 |
|                                       | 10,091.29                                           | TPY                             | X 1                    |                        | 0.0174                                           | TPY                      | X 298                   |                        | 29.09             | TP :               | X 25              |              | 10,823.66         | Tons            |
| CO <sub>2</sub> e                     | 10                                                  | ,091.29                         |                        | +                      |                                                  | 5.18                     | +                       |                        |                   | 727.19             | =                 |              | Year              |                 |
|                                       |                                                     | CO2                             |                        |                        |                                                  | N2O                      |                         |                        |                   | CH4                |                   |              |                   |                 |
| 1 Rated Heat C                        | apacity (MMBtu                                      | /Hr) = Flower                   | ate (Scf/              | Hr) * Hoot (           | Ontent /                                         |                          | N/N/R+11/1              | ∩ <sup>6</sup> Rtu\    |                   |                    |                   |              |                   |                 |
|                                       | $nole$ ) = $\Sigma$ (Mole)                          |                                 |                        |                        |                                                  |                          |                         |                        | IC Coroad C       | Shoot for          | r gas anali       | vcic         |                   |                 |
|                                       |                                                     |                                 |                        |                        |                                                  |                          |                         |                        | iG Spreed S       | sneet for          | gas anai          | ysis         |                   | -               |
| Has to be ma                          | intained <500 lb                                    |                                 |                        |                        |                                                  |                          |                         |                        |                   |                    |                   |              |                   | -               |
|                                       | $H_2S$ (Lb/hr) = Vo                                 | lume (Scf/h                     | r) * (1 lb-            | -mol/380.6             | 7) *(H₂S n                                       | nol%) * (34              | .08 Lb H <sub>2</sub> S | /Lb-mol)               |                   |                    |                   |              |                   |                 |
| <sup>4</sup> SO <sub>2</sub> Conversi | on Factor 168.3                                     | Lb SO <sub>2</sub> /MSo         | f of Gas               |                        |                                                  |                          |                         |                        |                   |                    |                   |              |                   |                 |
|                                       |                                                     | =(1.000                         | Scf/MSc                | f) *(1Lb-Mc            | ole/380.6                                        | 7 Scf)* (64.0            |                         | /Lb-Mole)              |                   |                    |                   |              |                   |                 |
| 5 A cov                               | o flamo := 000/ - 51                                |                                 | 33., 14130             | ., (220 1710           | , 500.0                                          | . 50., (04.)             |                         | .,                     |                   |                    |                   |              |                   |                 |
|                                       | e flare is 98% eff                                  |                                 |                        |                        |                                                  |                          |                         |                        |                   |                    |                   |              |                   |                 |
|                                       | sing the gas anal<br>ere, Y <sub>i</sub> = mole fra |                                 | hydrocar               | hon constit            | tuants' i /                                      | such as ma               | thang of                | hang pron              | ane carbo         | n diovid           | e etc l a         | nd R = n     | umber of co       | rhon            |
|                                       |                                                     |                                 |                        |                        |                                                  |                          |                         |                        |                   | ii uioxiu          | e, ett.) di       | iu nj- II    | uniber Of Cdl     | IDUII           |
|                                       | ydrocarbon cons                                     |                                 |                        |                        | roon diox                                        | ιαe, 2 tor e             | tnane, 3 f              | or propane             | e, etc.           |                    |                   |              |                   |                 |
| -                                     | ed to be "lightly:                                  |                                 |                        |                        |                                                  |                          |                         |                        |                   |                    | -                 |              |                   |                 |
| Hexane is a H                         | IAP. Assume He                                      | xanes+ or H                     | exane are              | e HAPS                 |                                                  |                          |                         |                        |                   |                    |                   |              |                   |                 |

## Flare at 14-9

| Flare at 1                | 4-9                                                 |                                 |                    |                        |                     |                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                    |                   |                       |                  |                  |
|---------------------------|-----------------------------------------------------|---------------------------------|--------------------|------------------------|---------------------|--------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|-------------------|-----------------------|------------------|------------------|
| Data                      | Total                                               |                                 | Separ              | ator Gas               | Tan                 | k Gas                    | Pile                    | ot Gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GWP (11/          | 29/2013)           | 40 CFR            | Part 98               | Sub C GHG E      | mission          |
| Volume                    | 12,660.867                                          | scf/hr (Ind.)                   | 300.0              | Mscf/day               | 3.9                 | Mscf/day                 | 0.0                     | Mscf/day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N <sub>2</sub> 0= | 298                |                   | Factors (Table C-1)   |                  |                  |
| H₂S mol%                  | 0.0006%                                             | mol%                            | 0.0006%            | mol%                   | 0.0000%             | mol%                     | 0.0000%                 | mol%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO <sub>2</sub> = | 1                  | $N_20 =$          | (                     | 0.0001           | kg/MMB           |
| Heat Content              | 1421.38                                             | Btu/scf (Ind)                   | 1412.33            | Btu/scf (Ind)          | 2124.62             | Btu/scf (Ind)            | 1020.00                 | Btu/scf (Ind)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CH <sub>4</sub> = | 25                 | AF                | P 42 Emissions Fa     |                  | ors <sup>7</sup> |
| VOC MW                    | 10.55                                               | lb/lb-mol <sup>2</sup>          | 10.34              | lb/lb-mol <sup>2</sup> | 26.76               | lb/lb-mol <sup>2</sup>   | 0.15                    | lb/lb-mol <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                    | NO <sub>X</sub> = |                       | 0.068            | lb/MMBt          |
| CO <sub>2</sub>           | 0.76%                                               | mol%                            | 0.76%              | mol%                   | 0.18%               | mol%                     | 0.50% mol%              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                    | CO=               |                       | 0.37             | lb/MMBt          |
| CH <sub>4</sub>           | 62.23%                                              | mol%                            | 62.65%             | mol%                   | 30.03%              |                          | 95.00%                  | mol%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                    | PM <sub>1</sub> = |                       | 40               | μg/L             |
| C <sub>6</sub>            | 1.10                                                | lb/lb-mol <sup>2</sup>          | 1.09               | lb/lb-mol <sup>2</sup> | 1.78                | lb/lb-mol <sup>2</sup>   | 0.01                    | lb/lb-mol <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                    |                   |                       |                  |                  |
| OP Hours                  | 8760                                                | Hrs                             |                    |                        |                     |                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Ind. STP)        | scf/lbmol=         | 380.67            | 60 °F                 | 14.65            | 5 psia           |
| Destruction Eff           | 98.00%                                              | DRE                             | Hea                | at Input               | 18.00               | MMBtu/hr1                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (EPASTP)          | scf/lbmol=         | 385.5             | 68 °F                 | 14.696           | o psia           |
|                           |                                                     |                                 |                    | Po                     | tential F           | lare Emissi              | on Calcu                | lations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                    |                   |                       |                  |                  |
| Pollutants                |                                                     |                                 |                    |                        |                     |                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                    |                   |                       |                  |                  |
| PM,                       | 40                                                  | μg                              | 12660.9            | scf (Ind.)             | 2.2E-9 lb           | 8,760                    | Hr                      | 1 Ton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28.31685          | L 1.01             | scf(EPA)          | _                     | 0.140            | 0 Tons           |
| FIW1                      | L                                                   |                                 |                    | Hr                     | μg                  | Yea                      | ar                      | 2,000 Lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | scf (EPA          | 1                  | scf(Ind.)         | -                     | Yea              | r                |
|                           | 1000                                                | 00 4                            |                    | 1.00 (41 1)            | I                   |                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 -               |                    |                   |                       |                  |                  |
| SO <sub>2</sub>           | 168.3                                               | Lb SO <sub>2</sub> <sup>4</sup> | 12.661             | . ,                    | 0.001%              | H <sub>2</sub> S MoI%    | 8,760                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 Ton             |                    |                   | = -                   |                  | 7 Tons           |
|                           | MScf (In                                            | a.)                             |                    | Hr                     |                     |                          | Year                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,000 Lb          |                    |                   |                       | Yea              | r                |
|                           | 0.068                                               | lb                              | 17 006             | MMBtu                  | 8,760               | Шr                       |                         | Ton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                    |                   |                       | 5 360            | 0 Tons           |
| NO <sub>x</sub>           | MMBtı                                               |                                 | 17.550             | Hr                     |                     | rear                     | 1002000200020020        | 00 Lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                    |                   | _                     | Yea              |                  |
|                           | IVIIVID((                                           |                                 |                    |                        | <u>'</u>            |                          | ,,                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                    |                   |                       |                  |                  |
| со                        | 0.37                                                | lb                              | 17.996             | MMBtu                  | 8,760               | Hr                       | 1                       | Ton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                    |                   |                       | 29.164           | 4 Tons           |
| CO                        | MMBtu                                               | ı                               |                    | Hr                     | ١                   | /ear                     | 2,0                     | 00 Lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                    |                   | -                     | Yea              | r                |
|                           |                                                     |                                 |                    |                        |                     |                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                    |                   |                       |                  |                  |
| VOC⁵                      | 12,660.9                                            | Scf (Ind.)                      |                    | lb-mol                 |                     | Lb VOC                   | 8,760                   | A00010101010101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 Ton             | 2.00%              | Inv. DRE          | - = 1                 |                  | 2 Tons           |
|                           | Hr                                                  | 1                               | 380.67             | scf (Ind.)             | Lb                  | -Mole                    |                         | /ear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,000 Lb          | _                  |                   |                       | Yea              | r                |
|                           | 12,660.9                                            | Scf (Ind.)                      | 1                  | lb-mol                 | 1.10                | Lb C <sub>6</sub>        | 8,760                   | Hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 Ton             | 2.00%              | Inv. DRE          |                       | 3.21!            | 5 Tons           |
| HAPs <sup>8</sup>         | 12,000.5<br>Hr                                      | Oci (ilia.)                     |                    | scf (Ind.)             | 1004101A, NEOTHORNO | -Mole                    | Year                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,000 Lb          | 2.00 /6            |                   | = -                   | Yea              |                  |
|                           |                                                     |                                 | 000.07             | 00: (0.)               | 1                   | IVIOIO                   | <u> </u>                | cai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,000 20          |                    |                   |                       |                  |                  |
| CO <sub>2</sub> 5,6       | 98.00% DRE                                          | 1.11E+08                        | Scf (Ind.)         | 1.60                   | lb-mol C            | O <sub>2</sub> (stoich.) | 1                       | lb-mol gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 44.01             | Ib CO <sub>2</sub> | 1 Ton             |                       | 10,042.79        | Tons             |
| of Combustion             |                                                     | Yr                              |                    | 1                      | lb-mol g            | as (stoich.)             | 380.67                  | scf (Ind.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lb-mol            | e CO <sub>2</sub>  | 2,000 Lb          |                       | Yea              | r                |
|                           |                                                     | 0.44.13                         | 1                  |                        |                     |                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                    | 1                 |                       |                  |                  |
| CO <sub>2</sub>           | 1.11E+08<br>Yr                                      | Scf (Ind.)                      | 0.76%              | mol% CO <sub>2</sub>   |                     | lb-mol                   | Heteletetet             | Lb CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 Ton             |                    |                   | = -                   |                  | Tons             |
| of Fuel                   | 11                                                  |                                 | P                  |                        | 360.67              | scf (Ind.)               | Lb-mole                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,000 Lb          |                    |                   |                       | Yea              | .r               |
|                           | 0.001 M Ton                                         | 0.001421                        | MMRtu              | 12 660 9               | Scf (Ind.)          | 0.0001                   | ka                      | 8,760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hr                | 1.1023             | Tons              |                       | 0.017            | 4 Tons           |
| N <sub>2</sub> O          | kg Scf (I                                           |                                 | proposos. Opososos |                        |                     | MME                      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ar                |                    | ric Ton           | 1 = 1                 | Yea              |                  |
|                           |                                                     |                                 |                    |                        |                     |                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                    |                   |                       |                  |                  |
| CH <sub>4</sub>           | 1.11E+08                                            | Scf (Ind.)                      | 2.00%              | Inv. DRE               | 62.23%              | mol% CH <sub>4</sub>     | V03503503507            | lb-mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | Lb CH4 1 Ton       |                   |                       |                  | 9 Tons           |
| Uncombusted               | Yr                                                  |                                 |                    |                        | 14                  |                          | 380.675                 | scf (Ind.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lb-m              | role               | 2,000 Lb          |                       | Yea              | r                |
|                           | 10,001,00                                           | -                               |                    |                        | 0.0171              | -                        | <b>-</b>                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 00 T               |                   |                       | 40 400 4         |                  |
| Mass Sum                  | 10,091.29                                           | Ions                            | +                  |                        | 0.0174 Tons<br>Year |                          | +                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29.09 Tons        |                    | <u>s</u> =        |                       | 10,120.40<br>Yea | _                |
| Mass Sulli                | Year                                                | CO2                             |                    |                        |                     |                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                    |                   |                       | Ica              | <u>.</u>         |
|                           |                                                     | 002                             |                    |                        |                     | N2O                      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | CH4                |                   |                       |                  |                  |
|                           | 10,091.29                                           | TPY                             | X 1                |                        | 0.0174              | TPY                      | X 298                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29.09             | TP :               | X 25              |                       | 10,823.66        | Tons             |
| CO₂e                      | 10                                                  | ,091.29                         |                    | +                      |                     | 5.18                     |                         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | 727.19             | =                 |                       | Yea              |                  |
| _                         |                                                     | CO2                             |                    |                        |                     | N2O                      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | CH4                |                   |                       |                  |                  |
| 1 Rated Heat C            | apacity (MMBtu,                                     | /Hr) - Flowr                    | ata (Scf/          | Hr) * Hoat (           | Content (           | Rtu/Scf\ * /             | NANAR+ii/1              | 0 <sup>6</sup> Β+μ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                    |                   |                       |                  |                  |
|                           |                                                     |                                 |                    |                        |                     |                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IC C              | ^l + £             |                   |                       |                  | +                |
|                           | $mole$ ) = $\Sigma$ (Mole                           |                                 |                    |                        |                     |                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iG Spreed :       | Sneet for          | gas anai          | ysis                  |                  | -                |
| <sup>3</sup> Has to be ma | intained <500 lb                                    |                                 |                    |                        |                     | •                        | •                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                    |                   |                       |                  | -                |
|                           | $H_2S$ (Lb/hr) = Vo                                 | lume (Scf/h                     | r) * (1 lb-        | -mol/380.6             | 7) *(H₂S n          | nol%) * (34.             | .08 Lb H <sub>2</sub> S | (Lb-mol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                    |                   |                       |                  |                  |
| <sup>4</sup> SO₂ Conversi | on Factor 168.3                                     | Lb SO <sub>2</sub> /MSo         | f of Gas           |                        |                     |                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                    |                   |                       |                  |                  |
|                           |                                                     | =(1.000                         | Scf/MSc            | f) *(1Lb-Mc            | le/380.6            | 7 Scf)* 164 (            | 066 Lb SΩ               | /Lb-Mole\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | -                  |                   |                       |                  |                  |
| 5 A course ! ! !          | flore is 000/ · ff                                  |                                 | 33., 14130         | ., (225 1710           | , 555.0             | . 50., (04.0             | 20 20 30                | ر اعتار المار الما |                   |                    |                   |                       |                  | +                |
|                           | e flare is 98% eff                                  |                                 |                    |                        |                     |                          | -                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                    | -                 |                       |                  | +                |
|                           | sing the gas anal<br>ere, Y <sub>i</sub> = mole fra |                                 | hydrocar           | hon constit            | l<br>luents' i /    | such as mo               | thane of                | hane pror                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lane carbo        | n diovid           | e etclar          | nd R n                | umber of c       | arhon            |
|                           | •                                                   |                                 |                    |                        |                     |                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | iii uioxid         | e, ett.) di       | iu n <sub>j</sub> = N | unibel Ol Co     | ווטטוג           |
|                           | ydrocarbon cons                                     |                                 |                    |                        | nou glox            | iue, 2 for e             | mane, 31                | or propane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e, etc.           |                    | I                 |                       |                  |                  |
| -                         | d to be "lightly s                                  |                                 |                    |                        |                     |                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                    | -                 |                       |                  | -                |
| Hexane is a l             | IAP. Assume He                                      | kanes+ or H                     | exane are          | HAPS                   |                     |                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                    |                   |                       |                  |                  |